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ADVERTISEMENT. 

The Committee appointed by the Royal Society to direct the publication of the 

Philosophical Transactions take this opportunity to acquaint the public that it fully 

appears, as well from the Council-books and Journals of the Society as from repeated 

declarations which have been made in several former Transactions, that the printing of 

them was always, from time to time, the single act of the respective Secretaries till 

the Forty-seventh Volume; the Society, as a Body, never interesting themselves any 

further in their publication than by occasionally recommending the revival of them to 

some of their Secretaries, when, from the particular circumstances of their affairs, the 

Transactions had happened for any length of time to be intermitted. And this seems 

principally to have been done with a view to satisfy the public that their usual 

meetings were then continued, for the improvement of knowledge and benefit of 

mankind : the great ends of their first institution by the Royal Charters, and winch 

they have ever since steadily pursued. 

But the Society being of late years.greatly enlarged, and their communications more 

numerous, it was thought advisable that a Committee of their members should be 

appointed to reconsider the papers read before them, and select out of them such as 

they should judge most proper for publication in the future Transactions; which was 

accordingly done upon the 26th of March, 1752. And the grounds of their choice are, 

and will continue to be, the importance and singularity of the subjects, or the 

advantageous manner of treating them : without pretending to answer for the 

certainty of the facts, or propriety of the reasonings contained in the several papers 

so published, which must still rest on the credit or judgment of their respective 

authors. 

It is likewise necessary on this occasion to remark, that it is an established rule of 

the Society, to which they will always adhere, never to give their opinion, as a Body, 
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upon any subject, either of Nature or Art, that comes before them. And therefore the 

thanks, which are frequently proposed from the Chair, to be given to the authors of 

such papers as are read at their accustomed meetings, or to the persons through whose 

hands they received them, are to be considered in no other light than as a matter of 

civility, in return for the respect shown to the Society by those communications. The 

like also is to be said with regard to the several projects, inventions, and curiosities of 

various kinds, which are often exhibited to the Society; the authors whereof, or those 

who exhibit them, frequently take the liberty to report, and even to certify in the 

public newspapers, that they have met with the highest applause and approbation. 

And therefore it is hoped that no regard will hereafter be paid to such reports and 

public notices; which in some instances have been too lightly credited, to the 

dishonour of the Society. 
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PHILOSOPHICAL TRANSACTIONS. 

I. The Monoclinic Double Sulphates Containing Ammonium. 

Completion of the Double Sulphate Series. 

By A. E. H. Tutton, D.Sc., M.A., F.R.S., President of the Mineralogical Society. 

Received June 8,—Read June 17, 1915. 

In this communication are described the five remaining double sulphates of the series 

R2M(S04)2.6H20, in which R. is ammonium and M is nickel, cobalt, manganese, 

copper, and cadmium. The ammonium salts, in which M is magnesium, zinc, and 

iron, have been described in two previous communications,*! in the latter of which 

(that concerning ammonium ferrous sulphate) a number of general questions 

concerning the whole series were also discussed. The present contribution completes 

the author’s work, commenced in the year 1890, on the double sulphates of this 

important monoclinic series, in all 31 salts, of which the R, bases have been potassium 

rubidium, caesium-, ammonium, and thallium. Excluding thallium—of which only the 

zinc double sulphate has been included, the other double salts containing thallium not 

having yet been obtained in crystals of the perfection necessary for detailed accurate 

work of the character regarded as essential by the author—the four bases, potassium, 

rubidium, caesium, and ammonium should give rise, with the eight several dyad bases 

above enumerated, to 32 double sulphates. All these have been obtained in excellent 

crystals, and fully described, with the two exceptions of potassium manganese and 

potassium cadmium sulphates, which, for some as yet undiscovered reason, are 

incapable of preparation. Yet so thoroughly are the relations between the various 

salts, and the rules governing the replacement of any one alkali base by any other, 

now understood, that it has been found possible to predict the constants of the two 

missing salts. Of the isomorphous double selenates, nine salts (including thallium 

zinc selenate) containing magnesium and zinc as M metals have already been 

described by the author, and it is intended that the remaining double selenates, 

those containing the other dyad metals, shall form the subject of the author’s next 

commun ication. 

* ‘ Journ. Chem. Boc., Trans.,’ 1905, vol. 87, p. 1123. 

t ‘Roy. Soc. Proc.,’ A, 1913, vol. 88, p. 361. 

VOL. CCXVI.-A 538. B [Published October 30, 1915. 



2 DR. A. E. H. TUTTON ON THE 

Ammonium Nickel Sulphate, (NH4)2 Ni (S04)2.6H20. 

Morphology. 

The first measurements of the crystals of this salt were made 60 years ago by 

Marignac,* and the salt was included four years later by Murmann and Rotter} 

in their comprehensive crystallographic investigation. The forms observed in both 

investigations were the same as those given in the list below, except a {100} and 

o {ill}, and the values observed for the principal angles will be found quoted in the 

two last columns of the table of angles. 

Crystal System.—Monoclinic. Class No. 5, holohedral-prismatic. 

Ratios of Axes.—a : b : c = 07373 : 1 : 0'5000. Values of Murmann and Rotter, 

07370 : 1 : 0‘5032. 

Axial Angle.—ft = 106° 57'. Value of Murmann and Rotter, 107° 4'. 

Forms Observed.—a {100}, b {010}, c {001}, p {110}, p' {120}, q {Oil}, A {201}, 

o {111}, o'{Ill}. 

Habit.—Short prismatic parallel p {110}, or more or less tabular parallel to a pair 

of faces of this prism (developed more than the other pair), or parallel to c {0011. 

Ten excellent small and perfectly transparent crystals of this magnificent bluish 

emerald-green salt were measured, selected from six different crops. The results are 

shown in the accompanying table of angles. 

The crystals were of the two types illustrated in figs. 1 and 2. 

The characteristic of the first type is the predominance of the primary prism 

p {110} and the basal plane c {001}, with smaller faces of the clinopinakoid b {010}, 

the clinodome g{01l}, the form r'{20l}, and the two hemipyramids o{lll} and 

o'{Ill}. The whole of the faces of the two latter forms were never found on anyone 

crystal, and usually only one or two such faces were present. The form r'{20l} was 

also very subsidiary, and on many crystals only one of the two faces was present. 

* ‘ Mem. Soc. Phys. Geneve,’ 1885, vol. 14, p. 247. 

t ‘Sitz. Ber. Akad. Wiss. Wien,’ 1859, vol. 34, p. 158. 



MONOCLINIC DOUBLE SULPHATES CONTAINING AMMONIUM. 3 

Interfacial Angles of Ammonium Nickel Sulphate. 

Angle. 
No. of 

measure¬ 
ments. 

Limits. 
Mean 

observed. 
Calcu¬ 
lated. 

Diff. 

Yah 

M. & R. 

res of 

Marignac. 

far =(100): (001) 1 
0/0/ 

73 4 73 3 i 72 56 
o / 

as =(100):(101) — — — 44 35 — — — 

sc =(101): (001) — — — 28 28 — — — 

cr =(001): (201) 8 64 56- 65 6 65 2 65 5 3 — 64 0 
If =(001):(101) — — — 39 1 — — — 

s'r =(101): (201) — — — 26 4 — — — 

r'a =(201): (100) 1 — 41 47 41 52 5 — — 

fr'c =(201): (001) 8 114 52-115 4 114 58 114 55 3 — — 

fap =(100): (110) — — — 35 11 — — 

pp' =(110): (120) 1 — 19 26 19 28 2 — 

p'b = (120) : (010) 1 — 35 18 35 21 3 — 

< PP"' = (HO): (130) — — — 29 31 — — 

p"'b = (130) : (010) _ 
— — 25 18 — — 

pb =(110):(010) 28 54 39- 54 58 54 49 * 
— 54 50 — 

pp =(110):(110) 16 70 8- 70 39 70 22 70 22 0 70 20 70 40 

Jcq =(001): (Oil) 31 25 23- 25 45 25 34 * — 25 37 25 10 
=(011): (010) 35 64 17- 64 40 64 26 64 26 0 64 24 — 

fao =(100): (111) — — — 47 46 — — — 

oq =(111):(Oil) 1 — 26 56 26 59 3 — — 

aq =(100): (Oil) — — — 74 45 — — — 

qo =(011):(111) 1 — 35 13 35 8 5 — 32 30 
[o'a =(111): (100) — ■— — 70 7 —• — — 

f co =(001): (111) 3 33 57- 34 0 33 58 33 58 0 — — 

| op =(111): (110) 3 42 9- 42 15 42 12 42 15 3 — 

•{ cp =(001): (110) 38 76 1- 76 25 76 13 ■ir 
— 76 7 77 0 

1 po =(110):(111) 19 58 28- 58 50 58 37 58 39 2 58 29 — 

fo'c =(111): (001) 19 44 59- 45 19 45 9 45 8 1 45 4 44 0 

[bn =(010):(121) — — — 54 57 — — — 

J no =(121):(111) — —- ■— 15 43 — — — 

1 bo =(010): (111) 2 70 38- 70 39 70 39 70 40 1 — — 

Us =(111): (101) — — — 19 20 — — —- 

fbo' =(010): (Ill) 7 65 3- 65 10 65 7 65 8 1 — — 

os' =(111): (101) — — 24 52 — — — 

L o' o' =(111): (III) 3 49 44- 49 50 49 47 49 44 3 — 50 30 

fsq =(101): (Oil) — — — 37 32 — — — 

qp = (Oil):(110) 32 87 51- 88 14 88 6 88 4 2 — — 

1 ps = (110):(101) — — 54 24 — 

LPi =(H0): (Oil) 33 91 44- 92 9 91 55 91 56 i — 

fsq =(101): (Oil) — — 45 30 — — — 

qn = (Oil):(121) — — 26 15 — .— — 

< 
np = (121):(110) — — — 36 8 — — — 

qp =(011):(110) 35 62 14- 62 32 62 24 62 23 i — — 

ps =(110): (101) — — — 72 7 —- — — 

LPi =(H0): (Oil) 36 117 23-117 44 117 36 117 37 i — — 

Vo' =(201): (Ill) 11 35 21- 35 33 35 26 35 25 i 35 28 — 

op =(111):(110) 15 91 52- 92 10 92 3 92 5 2 — — 

^pf =(110):(201) 19 52 24- 52 49 52 34 52 30 4 52 24 52 30 

Total number of 
measurements . 407 



4 DR. A. E. H. TUTTON ON THE 

In type 2, the q {011} faces were larger, and the c {001} faces relatively smaller 

and often reduced to narrow strips. The r'{20l} faces were also somewhat more 

prominent, and more of the faces of o {111} and o'{ill} were developed. 

The c and p faces in many crops were affected by striation, but those crystals 

selected for measurement were wonderfully free from this defect, and several of the 

crystals measured were practically perfect, yielding brilliant single images of the 

signal throughout, offering no trace of ambiguity as to the position of the faces: 

The contact face (that parallel to the bottom of the crystallising vessel) was either 

c or p. 

The next table affords a comparison of the axial angles and axial ratios of the four 

salts containing nickel. The axial angle of the ammonium salt is almost identical 

with that of the caesium salt. The values of the axial ratios of the ammonium salt 

clearly indicate the existence of isomorphism between this salt and the three salts 

containing the alkali metals. 

Comparison of the Axial Angles and Axial Ratios. 

Axial angle. Axial ratios. 

Potassium nickel sulphate . . 
Rubidium ,, „ . . 
Ammonium ,, ,, . . 
Ceesium „ ,, . . 

A 
105° 0' 
106° 3' 
106° 57' 
107° 2' 

a : b : c 
0-7379 : 1 :O’5020 
0-7350 : 1 : 0-5022 
0-7373 : 1 :0‘5000 
0-7270 : 1 :0-4984 

The next table affords a comparison of the morphological angles of the four salts. 

Comparison of the Interfacial Angles. 

Angle. KNi sulphate. RbNi sulphate. CsNi sulphate. AmNi sulphate. 

f ac = (100):(001) 

o r 

75 0 

o / 

73 57 

o t 

72 58 

o / 

73 3 
as =(100):(101) 45 48 45 4 44 21 44 35 
sc = (101):(001) 29 12 28 53 28 37 28 28 

< cr' = (001) : (201) 63 44 64 36 65 28 65 5 
cs' = (001) : (101) 38 33 38 57 39 22 39 1 
sY = (101):(201) 25 11 25 39 26 6 26 4 

[r'a = (201) : (100) 41 16 41 27 41 34 41 52 

[ap = (100): (110) 35 29 35 17 34 48 35 11 
pp = (110):(120) 19 28 19 28 19 28 19 28 
p'b = (120) : (010) 35 3 35 15 35 44 35 21 

[pb =(110):(010) 54 31 54 43 55 12 54 49 

< f cq =(001): (Oil) 25 52 25 44 25 28 25 34 
L qb =(011): (010) 64 8 64 16 64 32 64 26 
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Comparison of the Interfacial Angles (continued). 

Angle. KNi sulphate. RbNi sulphate. CsNi sulphate. AmNi sulphate. 
* 

[ao = (100) : (111) 

o / 

48 59 

o t 

48 16 

o / 

47 32 

o / 

47 46 
on =(111):(Oil) 27 33 27 19 27 8 26 59 

I an =(100):(Oil) 76 32 75 35 74 40 74 45 
no = (Oil): (111) 34 46 35 5 35 31 35 8 

[o a = (111) : (100) 68 42 69 20 69 49 70 7 

f co =(001): (111) 34 46 34 25 34 0 33 58 
op =(111): (110) 43 4 42 32 42 5 42 15 

\cp = (001): (110) 77 50 76 57 76 5 76 13 
po' = (110): (111) 57 26 57 57 58 31 58 39 

[o'c = (111): (001) 44 44 45 6 45 24 45 8 

J I bo =(010): (111) 70 12 70 25 70 48 70 40 

1 Los =(111): (101) 19 48 19 35 19 12 19 20 

J f bo' = (010): (Ill) 65 17 65 11 65 15 65 8 
i [ o's' = (Ill): (101) 24 43 24 49 24 45 24 52 

'sq =(101): (011) 38 13 37 56 37 35 37 32 
qp =(011):(110) 86 22 87 17 88 23 88 4 

_ps =(110):(101) 55 25 54 47 54 2 54 24 

[sq = (101):(011) 45 17 45 32 45 44 45 30 

< qp = (Oil):(110) 63 43 63 0 62 27 62 23 
Lps' = (110) : (101) 71 0 71 28 71 49 72 7 

fro' = (201) : (Ill) 34 43 35 6 35 22 35 25 
op = (111):(110) 93 1 92 38 92 32 92 5 

Ipr' = (110) : (201) 52 16 52 16 52 6 52 30 

The average and maximum changes of angle for the various replacements of one 

alkali base by another are given in the small table which follows. 

Double Sulphates containing Nickel. 

Replacement. Average change. Maximum change. 

K by Rb. 27 

/ o / 

63 = 1 3 
K by Cs. 54 122 =2 2 
K by NH4. 49 117 = 1 57 

The average and maximum changes of angle when potassium is replaced by 

ammonium are very nearly the same as occur when potassium is replaced by caesium, 

and are twice as great as when potassium is replaced by rubidium. 
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Of the 36 angles compared, 33 show differences on replacing potassium by ammonium 

in the same direction as when rubidium or caesium are introduced instead of potassium, 

the only three exceptions being when the differences are very minute. In 32 of the 

33 cases the changes are greater than when rubidium is introduced, and in 11 cases 

they exceed the effect produced by introducing caesium for potassium. 

Cleavage.—There is a good cleavage parallel to r'{20l}, as usual in this series. 

Also a good cleavage was found parallel to b {010}. 

Volume. 

Relative Density.—Five determinations of specific gravity by the immersion 

method, using methylene iodide and benzene as the immersion liquid, gave 

following results :— 

I. Density for 18°‘9/4° 1 '9240 For 20°/4° . P9238 

II. „ 19°'4/4° . . . 1‘9238 „ 20°/4° . . 1/9237 

III. „ 18°*8/4° . . . P9228 „ 20°/4° . . P9226 

IV. „ 18°'2/4° . . . 1'9222 „ 20°/4° . . P9219 

y. „ 19°l/4° . . . P9219 „ 2074° . . 1*9217 

Mean . . 1*9227 

The value accepted for 20 /4° is therefore T923. 

Perrot* obtained the value 1’92 (three individual values 1‘920, 1'920, and P927). 

Molecular Volume.— ^ ° = 203'91. Perrot gives 205. 
d P923 b 

Molecular Distance Ratios {top>ic axial ratios).—- 

x : w = 61426 : 8*3312 : 41656. 

Redeterminations of Densities of Potassium, Rubidium, and Ccesium Nickel 

Sulphates.—-These were carried out in order to render all results involving the 

molecular volumes of the four salts strictly comparable, the same immersion liquid 

being used under like conditions. 

In earlier density determinations made with these salts the pyknometer method was 

employed. 

I. 

Potassium Nickel Sulphate, K2Ni (S04)2.6H20. 

Density for 19°'0/4° . . . 2*2363 For 20°/V . . . 2*2361 

II. 17°'7/4° . . . 2*2378 „ 2074o . . . 2*2373 

III. „ 18°T/4° . . . 2*2357 „ 20°/4° . . . 2*2353 

IV. „ 19°*6/4° . . . 2*2374 „ 2074o . . . 2*2373 

The value accepted for 20°/4° is 2*237. 

Mean . . 2*2365 

* ‘Arch, des Sciences phys. et nat., Geneve,’ 1891, 23. ‘Dissertation, Geneve,’ 1890, 47. 
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Rubidium Nickel Sulphate, Rb2Ni(S04)2. 6H20. 

I. Density for l7°'8/4° . . . 2-5857 For 20°/4° . . . 2-5851 

II. „ 170,2/4° . . . 2-5854 „ 20°/4° . , . 2-5847 

III. „ 170,5/4° . . . 2-5867 „ 20o/4° . . . 2-5861 

IV. „ 17°’6/4° . . . 2-5886 „ 2074° . . . 2-5880 

Mean . . 2-5860 

The value accepted for 20°/4° is 2-586. 

Ccesiwn Nickel Sidphate, Cs2Ni (S0,)3. 6H.O. 

I. Density for 19°'l/4° . . . 2-8720 For 2074o . . . 2-8717 

II. „ 18°'0/4° . . . 2-8753 „ 2074o . . . 2-8747 

III. „ 19°-2/4° . . . 2-8706 „ 2074o . . . 2-8704 

IV. „ 19°-6/4° . . . 2-8730 „ 2074o . . . 2-8729 

Mean . . 2-8724 

The value accepted for 20°/4° is 2-872. 

The former pyknometer values obtained for the three salts were respectively 

2'233, 2"583, and 2'865. The higher values now obtained are doubtless very near 

the truth, the error of the pyknometer method being on the side of lowness, due to 

inevitable mother-liquor inclusions, whereas the immersion method affords the result 

for the most cavity-free crystal. 

In the next table the volume constants of the four nickel-containing salts are 

compared. It shows that the molecular volume and topic axial ratios of the 

ammonium salt are close to those of the rubidium salt; the molecular volume is half 

a unit higher, the y and f ratios are also slightly higher and the w ratio very slightly 

lower. 

Volume Constants of the Nickel Group. 

Salt. 
Molecular 

weight. 
Specific 
gravity. 

Molecular 
volume. 

Topic axial ratios. 

KNi sulphate . . 433-96 2'237 193-99 
X 

6-0170 8-1542 
CO 

4-0934 
PbNi J? 526-06 2-586 203-43 6-1065 8-3081 4-1723 
NHfSfi 392-12 1-923 203-91 6-1426 8-3312 4-1656 
CsNi n 620-06 2-872 215-90 6-2097 8-5416 4-2572 

Optics. 

Orientation of the Optical Ellipsoid.—The plane of the optic axes is the symmetry 

plane b {010}. The double refraction is of positive sign, so that the first median line 

corresponds to the refractive index y and the second median line to a. 
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Extinction determinations with two sections parallel to the symmetry plane afforded 

the following results :— 

Inclination of 2M.L. from normal to c {001}. 

Plate 1.11° 28' Plate 2.12° 2' 

Mean . . . llc 45' 

The direction is behind the normal, towards the vertical axis c. 

Murmann and Rotter found for this angle 10° 58', 

and Senarmont 12° 1'. 

As the axial angle ac is 73° S', this 2M.L. 

extinction direction is 5° 12' in front of the vertical 

axis c, and the first median line is 11° 45' from 

the inclined axis a, both extinction directions in 

the symmetry plane thus lying in the obtuse axial 

angle ac. 

The next table shows the positions of the a 

extinction direction in all four nickel salts, and fig. 3 

illustrates them graphically. 

Inclinations of a extinctions of Ni salts in front of axis c. 

(2M.L. for Am, K, and Rb salts, 1M.L. for Cs salt.) 

AmNi Sulphate 5° 12; RbNi Sulphate 12° 38' 

KNi „ 8° 42' CsNi „ 24° 7' 

The position of the ammonium salt ellipsoid is such that its a axis lies nearest to 

the c axis, and the ellipsoid rotates as the potassium, rubidium, and caesium salts are 

successively reached, further and further from this position, the rotation following the 

order of the atomic weights of the three alkali metals. 

Refractive Indices.—Six 60°-prisms were ground by means of the author’s cutting 

and grinding goniometer,* each to afford two indices directly, and the results are 

* A new crystal-grinding goniometer on the Goldschmidt two-circle principle has recently been 

described by F. E. Weight (‘Journ. Washington Acad, of Sciences,’ 1915, 5, 35). In its description a 

mere passing mention is made of the very efficient instrument which the author (Tutton) described in 

the year 1899 (‘Phil. Trans. Eoy. Soc.,’ A, 1899, 192, 457 ; ‘ Zeitschr. fur Kryst.,’ 1899, 31, 458; 

‘ Crystallography and Practical Crystal Measurement,’ 1911, p. 682), and which has been used in all his 

investigations during the past 16 years, over a thousand section-plates and prisms having been most 

accurately prepared with its aid, truly orientated and plane surfaced. This instrument is capable of 

achieving all that the new Wright instrument is described as accomplishing, and much more besides. 

The use of a second circle cannot add to rigidity, and the author infinitely prefers the most rigid one-circle 

principle. After 16 years of hard service the author’s cutting and grinding goniometer is as efficient and 

accurate as when first constructed by Messrs. Troughton and Simms. 

O 
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given in the next table. This is followed by another table, in which the refractive 

indices of the four nickel-containing salts are compared. 

Murmann and Rotter obtained indirectly the values « = 1*489, j3 — 1*498, and 

y = 1'508 for the middle of the spectrum. 

There is a considerable amount of absorption by this green salt at the red end of 

the spectrum, but the electric arc, used as a source of light with the author’s spectro¬ 

scopic monochromatic illuminator,# affords ample light for the observations in Li and 

C light. 

Refractive Indices of Ammonium Nickel Sulphate. 

Light. a. ft 7- 

Li. 1-4916 1-4975 1-5046 
C. 1-4921 1-4980 1-5051 
Na. 1-4949 1•5007 1-5081 
T1. 1-4976 1-5037 1-5110 
Cd. 1-4993 1■5052 1-5125 
F. 1-5007 1-5069 ]-5142 
C. 1-5060 1-5123 • 1-5196 

Mean of a, f3, and y for Na light = 1-5012. 

a = Vibration direction parallel to second median line, 5° 12' in front of axis c. 

f3 = ,, ,, „ symmetry axis b. 

y = ., ,, ,, first median line. 

General Formula for the intermediate refractive index /3, corrected to a vacuum 

(correction +0*0004):— 

0 . Qko 472 952 , 212 960 000 000 , 
p — 1 48/ 6 H-—-1-—-1- ... 

Aa A4 

The a indices are also reproduced very closely by the formula if the constant 

1*4873 is diminished by 0*0060, and the y indices if the constant is increased 

by 0*0073. 

Observations at 70° indicate that the refractive indices of ammonium nickel sulphate 

are diminished by about 0*0018° (for a) to 0*0022° (for y) for 55° rise of temperature. 

The comparative table shows that the refractive indices of ammonium nickel sulphate 

are just slightly higher than those of the analogous rubidium salt, and not nearly so 

high as those of the caesium salt. This is also clearly apparent as regards the mean 

refractive index given at the foot of the table. As regards double refraction, the 

ammonium salt occupies a similar position between the rubidium and caesium salts and 

much nearer to the rubidium one ; as this property of double refraction diminishes 

* ‘ Crystallography and Practical Crystal Measurement,’ 1911, p. 698. 

VOL. COXVI.-A. C 
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Comparison of the Refractive Indices. 

Index. Light IvNi 
sulphate 

RbNi 
sulphate. 

NH4Ni 
sulphate. 

CsNi 
sulphate. 

\ Li. 1-4809 1 4868 1-4916 1-5061 
C. 1-4813 1 4872 1-4921 1-5065 

cc .... \ 
1 j 

Na .... 1-4836 1 4895 1-4949 1-5087 
T1. 1-4860 1 4920 1-4976 1-5112 ' 
F. 1-4889 1 4949 1-5007 1-5146 

1 

L G . . . 1-4933 1 4996 1•5060 1-5192 

I r Li.... . 1-4889 1 4933 1-4975 1-5100 
C. 1-4893 1 4937 1-4980 1-5104 

£....{ 
Na . . . 1-4916 1 4961 1-5007 1-5129 
T1. . . 1-4941 1 4987 1-5037 1-5154 
F. 1•4972 1 5017 1-5069 1-5187 

i G. 1-5015 1 5062 1-5123 1-5235 

i 
i 
Li. 1-5022 1 5023 1-5046 1-5133 
C . . . . . 1-5026 1 5027 1-5051 1-5137 

r. ■ • d 
Na .... 1-5051 1 5052 1-5081 1-5162 
T1 . . 1-5077 1 5078 1-5110 1-5189 
F. 1-5109 1 5110 1-5142 1-5221 

l G. 1-5153 1 5156' 1-5196 1-5266 

Mean refractive index (a + [3 + 7) 1-4934 1 •4969 1-5012 1-5126 
for Na light 

Double refraction, Nay_a . . . 0-0215 0 •0157 0-0132 0-0075 

with rise of atomic weight of the alkali metal, the value is less than that for the 

rubidium salt. 

Axial Ratios of the Optical Indicatrix. 

a : P 7 CC P 7 
KNi sulphate . 00946 1 10091 0'9946 1 1*0091 

RbNi „ . . 0-9956 1 D0061 0-9986 1-0030 R0091 

NH4Ni „ . . 0-9961 1 C0049 1-0022 1-0061 1-0111 

CsNi . 0-9972 1 1-0022 1-0115 D0143 1-0165 

Axial Ratios of the Optical Velocity Ellipsoid. 

a b r a b r 

KNi sulphate . 1‘0054 1 0-9910 1-0054 1 0-9910 

RbNi ,, . 1-0044 1 0-9940 1-0014 0'9970 0-9910 

NH4Ni „ . . D0039 1 0-9951 0-9978 0-9939 0-9891 

CsNi . 1-0028 1 0-9978 0'9887 0-9859 0-9838 

Axial Ratios oj the Optical Ellipsoid.—These have been calculated for ammonium 

nickel sulphate for either form of ellipsoid ; the values are given in the accompanying 

table, and are compared with the values for the three analogous salts of the alkali 
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metals. The first series (on the left) shows the ratios when the /3-axis of each 

salt is taken as 1, and the second (right hand) series when the /3-axis of the potassium 

salt is taken = I ; this second series thus shows the effect on the optical ellipsoid of 

replacing one alkali base by another. In both series the position of' the ammonium 

salt is between the rubidium and ciesium salts, and much nearer to the former. 

Molecular Optical Constants.—These have been calculated with the aid of the 

densities as determined by the immersion method, both for the ammonium salt now 

under discussion, and for the potassium, rubidium, and caesium salts, and the results 

are set forth comparatively in the next three tables. 

The specific refraction and dispersion of ammonium nickel sulphate are considerably 

higher than those of the alkali-metal salts. The molecular dispersion is slightly higher 

than that of the caesium salt. The molecular refraction, whether calculated by the 

formula of Lorenz, or by that of Gladstone and Dale, is very close to (just higher 

than) that for the rubidium salt. The mean molecular refraction shows this very 

succinctly. 

Table of Specific Refraction and Dispersion (Lorenz). 

Sulphate. 

n2 _ i 
Specific refraction, —--- = n. 

1 (n2 + 2) d 
Specific disper 

“ Ho- 
sion. 

For ray C (Ha)- For ray Hy near G. 

cl. A 7- cl. A y- cl. A y- 

AmNi . . . 
KNi .... 
RbNi . . . 
CsNi . . . 

0-1509 
0-1273 
0-1113 
0-1035 

0-1524 
0-1290 
0-1125 
0-1042 

0-1543 
0-1321 
0-1143 
0-1048 

0-1545 
0-1300 
0-1137 
0-1057 

0-1561 
0-1318 
0-1149 
0-1064 

0-1580 
0-1349 
0-1167 
0-1070 

0-0036 
0-0027 
0-0024 
0-0022 

0-0037 
0-0028 
0-0024 
0-0022 

0•0037 
0-0028 
0-0024 
0-0022 

Table of Molecular Refraction and Dispersion (Lorenz). 

Salt. 

Molecular refractio 
7l2- 1 M 

1 “ m' Molecular dispersion. 
mG - mc. 

o c\ * At" -f- 2i 

For ray C (Ha). For ray Hy near G. 

CL. A 7- CL. A y- CL. A y- 

KNi sulphate 55-23 56-00 57-31 56-41 57-20 58-53 1-18 1-20 1-22 
RbNi 58-53 59-19 60-10 59-79 60-46 61-40 1-26 1-27 1-30 
AmNi ,, 59-17 59-77 60-49 60-58 61-22 61-95 1-41 1-45 1-46 
CsNi 64-20 64-61 64-97 65 • 55 66-00 66-34 1-35 1-39 1-37 
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Molecular Refraction (Gladstone and Dale). 

f—A M for ray C. Mean molecular 
Salt. refraction for ray C. 

a. A 7- 
T (a + ft + y). 

KNi sulphate. 93 • 37 94-92 97-50 95-26 
RbNi 99-11 100-43 102-26 100-60 
AmNi 100-34 101-55 103-00 101-63 
CsNi ,, ..... 109-35 110-19 110-91 110-15 

Optic Axial Angle.—-Three pairs of section plates were ground perpendicular to the 

first and second median lines. The optic axial angle is so large as to be invisible 

in air. The next table affords the results of the measurements of 2TIa and 2HW in 

monobromonaphthalene, the interference figures in which are very well defined. 

Murmann and Rotter obtained 86° 26' for the true angle 2Va, for the middle of 

the spectrum. 

Dispersion of the Median Lines.—The inclined dispersion of the median lines is 

small. Measurements in toluene, the refractive index of which (l'4955) is slightly 

lower, and in benzene, which possesses a slightly higher index (l‘5027), indicated that 

the dispersion is such that the first median line is nearer by 8 minutes to the axis a 

for red C-hydrogen light than for greenish-blue F-hydrogen light. 

Ammonium Nickel Sulphate. 

Determination of True Optic Axial Angle in Bromonaphthalene. 

No. of jjlate Observed No. of plate Observed Calculated Mean 
perp. 1 M.L. 2Ha. perp. 2 M.L. 2H0. 2Va. 2Va. 

Light. 

Li . 

C . 

Na. 

T1 . 

Cd . 

1 
2 
3 

1 
2 
3 

1 
2 
3 

1 
2 

3 

1 
2 
3 

1 
2 
3 

o / 

76 33 la 82 35 
76 26 2a 82 18 
76 32 3a 82 20 

76 30 la 82 31 
76 23 2 a 82 13 
76 29 3a 82 15 

76 8 la 81 55 
76 7 2a 81 50 
76 10 3a 81 45 

75 51 la 81 29 
75 50 2a 81 23 
75 50 3a 81 19 

75 42 la 81 11 
75 39 2a 81 5 
75 38 3a 81 0 

75 33 la 80 56 
75 27 2a 80 50 
75 26 3a 80 45 

86 
86 
86 

86 
86 
86 

86 
86 
86 

86 
86 
86 

86 
86 
86 

86 
86 
86 

o / 

86 27 

86 28 

86 33 

86 37 

86 40 

86 43 
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A comparison of the optic axial angles of the four salts containing nickel, instituted 

in the next table, shows that the angle for the ammonium salt is close to that of the 

caesium salt, being slightly lower than the latter. It has to be remembered that 

caesium nickel sulphate is (by exception in the series) of negative double refraction, 

so that the first median line is, in this case, the a axis of the indicatrix ellipsoid, 

instead of (as usual in the series) the y axis. 

Optic Axial Angles 2Ya of the Nickel Group. 

KNi sulphate. RbNi sulphate. AmNi sulphate. CsNi sulphate. 

Li. 

o / 

75 21 

o / 

82 5 

o / 

86 27 

o / 

87 15 
C. 75 19 82 4 86 28 87 17 
Na. 75 16 82 0 86 33 87 21 

■ T1. 75 13 81 56 86 37 87 29 
F. 75 9 81 48 86 43 87 40 

Ammonium Cobalt Sulphate (NH4)2 Co (S04)2.6H20. 

Morphology. 

The only crystallographic investigation of this salt hitherto made is that of 

Marignac (loc. cit.). The values of the angles observed by him are quoted in the 

last column of the table of angles. 

Crystal System.—Monoclinic. Class No. 5, holohedral-prismatic. 

Ratios of Axes.—- 

a : b : c = 07386 : 1 : (F4975. Values of Marignac, 07392 : 1 : (F4985. 

Axial Angle.—(3 = 107° 2'. Value of Marignac, 106° 56'. 

Forms Observed.—a {100}, {010}, c{001},y>{ll0}, q {Oil}, r'{20l}, o {ill}, 

o'{Tll}. 

Habit.—Short prismatic parallel p {l 10}, often with narrower c faces and larger 

q faces than in the nickel salt ; or more or less tabular parallel to a pair of faces of 

this prism p {110} predominatingly grown, or to c {001}. 

This is one of the finest salts of the series, the crystals being of a ruby or red-currant 

red colour. The crystals of several of the numerous crops 

obtained were composed of completely transparent well- 

developed individuals, having absolutely plane faces yielding 

brilliant single images of the signal of unusual perfection. 

Ten superb crystals were measured, selected from five different 

crops. The results are shown in the table of angles. A typical 

crystal is shown in fig. 4, and fig. 2, representing a crystal 

of ammonium, nickel sulphate, is equally typical of many crops 

of the cobalt analogue. Both are of the short prismatic type, but not infrequen 
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Intebfacial Angles of Ammonium Cobalt Sulphate. 

Angle. 
! No. of 
measure¬ 

ments. 
Limits. 

Mean 
observed. 

Calcu¬ 
lated. 

1 
Diff. Values of 

Marignac. 

[ac =(100): (001) _• o/o / o / 
72 58 

' 
73 4 

as =(100):(101) —• — — 44 43 — — 
sc =(101): (001) —■ — — 28 15 — — 
cr' =(001): (201) 17 64 37- 64 59 64 52 64 46 6 64 48 
cs' = (001): (101) — — — 38 41 — — 
sV = (101):(201) — — — 26 5 — — 
r'a = (201): (100) — — — 42 16 — — 

[ r'c = (201): (001) 16 115 2-115 21 115 8 115 14 6 — 

[ ap =(100): (110) — — — 35 14 — — 
VP = (110):(120) — — — 19 28 — — 
p'b = (120) : (010) — — — 35 18 — — 

■< pp'" = (110) : (130) — — — 29 30 — — 
p'"b = (130) : (010) —■ — — 25 16 — — 
pb = (110):(010) 40 54 38- 54 52 54 46 * — — 

L PP = (HO): (110) 20 70 23- 70 33 70 28 70 28 0 70 32 

$ cq = (001): (Oil) 31 25 12- 25 39 25 26 — 25 15 
\qb = (Oil): (010) 33 64 27- 64 52 64 34 64 34 0 

[ao = (100): (111) — — — 47 52 — — 
oq =(111): (011) 4 26 41- 26 51 26 47 26 47 0 26 47 
aq =(100):(Oil) 1 ' — 74 29 74 39 10 — 
qo = (Oil): (Ill) 5 34 54- 35 6 35 2 34 57 5 34 55 

[da = (Ill) : (100) 1 — 70 33 70 24 9 — 

co = (001): (111) 9 33 42- 33 52 33 46 33 45 1 33 40 
op = (111): (110) 9 42 18- 42 29 42 22 42 24 2 — 

■{ cp =(001): (110) 40 75 55- 76 24 76 9 * — 76 14 
po' = (110) : (111) 16 58 40- 58 59 58 52 58 56 4 — 
dc = (111):(001) 16 44 50- 45 25 44 57 44 55 2 44 54 

[bn =(010):(121) — — — 55 1 — 
| no = (121): (111) — — — 15 42 — — 
-\bo =(010): (111) 7 70 35- 70 46 70 41 70 43 2 — 

| os =(111):(101) —- — — 19 17 — — 
[oo = (111): (111) 1 — 38 38 38 34 4 38 39 

"bo' =(010): (Ill) 7 65 6- 65 20 65 10 65 11 1 — 
o's' = (111): (101) -r — — 24 49 — — 

Jo' = (111): (111) 1 — 49 42 49 38 4 49 20 

"sq =(101): (Oil) — — — 37 18 — 
J qp = (Oil):(110) 37 88 2- 88 29 88 12 88 11 1 

1 ps = (110):(101) — — — 54 31 — — 
<-Vq =(110): (Oil) 38 91 27- 91 57 91 47 91 49 2 — 

' s'q =(101): (Oil) — — — 45 11 — — 
qn = (Oil): (121) — — — 26 6 — — 
np = (121):(110) —- — — 36 15 — — 
qp = (Oil):(110) 36 62 7- 62 28 62 21 62 21 0 — 
ps' = (110) : (101) — — — 72 28 — — 

dPq =(H0): (Oil) 36 117 29-117 52 117 40 117 39 1 — 

"r'd = (201): (Ill) 17 35 9- 35 37 35 21 35 23 2 35 28 
o'p = (111): (110) 18 91 44- 92 5 91 54 91 48 6 — 
pn' = (110) : (201) 36 52 36- 52 52 52 43 52 49 6 52 40 

Total number of 
measurements . . 492 
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the prism is relatively longer than is shown in the two figures. In the great majority 

of crops prepared the type was that of fig. 4, or of the same elongated vertically, the 

faces of the basal plane c {001} predominating at the terminations. But in several of 

the crops thee faces were relatively narrower and the faces of q {011} proportionately 

larger, as shown in fig. 2. In all the crops the prism faces p {110} were always 

important, and indeed usually predominated. The two faces of the clinopinakoid 

b {010} were often well developed, although many crops showed these faces only as 

strips, and not uncommonly they were either entirely absent or mere lines. The 

faces of the orthopinakoid r' {201} were usually very subordinate, as shown in 

the figure. The two hemipyramids o{lll} and o'{111} were usually represented 

by some of their faces, and the latter form often by all its faces, although 

small. The orthopinakoid a {100} was only very rarely developed to a measurable 

extent. 

The next three tables compare the morphological constants of the four salts 

containing cobalt. The first of these shows that the axial angle /3 of ammonium cobalt 

sulphate is very close to that of caesium cobalt sulphate, and that the axial ratios of 

the ammonium salt are very clearly such as place that salt in the same isomorphous 

series as the three cobalt salts containing the alkali metals. 

The angular comparisons instituted in the second table are supplemented by 

a further short table showing the average and maximum changes of angle which occur 

when potassium is replaced by the other three alkali bases. These changes are seen 

to be nearly the same for the ammonium and caesium replacements, and these again 

are twice as great as the average and maximum changes of angle when rubidium is 

introduced instead of potassium. A critical analysis of the comparative table of angles 

also shows that of the 36 angles compared 32 show changes, when ammonium replaces 

potassium, in the same direction as when the latter is replaced by the other two 

alkali metals, and the only four exceptions are in cases where the changes are very 

minute.' Of the 32, 29 show larger changes than for the rubidium replacement, and 

11 show even larger changes than for the caesium replacement. 

Comparison of the Axial Angles and Axial Ratios. 

Axial angle. Axial ratios. 

A a :b: c, 
Potassium cobalt sulphate . 104° 55' 0-7404 : 1 : 0-5037 
Rubidium ,, ,, . . 106° V 0-7391 : 1 :0*5011 
Ammonium ., ,, , 107° 2' 0-7386 : 1 :0’4975 
Caesium ,, . 107° 8' 0-7270: 1 -.0-4968 



16 DE. A. E. H. TUTTON ON THE 

Comparison of the Inter facial Angles. 

Angle. IvCo si ilphate. EbCo sulphate. CsCo sulphate. AmCo sulphate. 

' ac (100):(001) 

o 

75 5 

o 

73 

/ 

59 

° I 

72 52 

o 

72 58 
as = (100):(101) 45 53 45 11 44 20 44 43 
sc, = (101): (001) 29 12 28 48 28 32 28 15 
cr' = (001):(201) 63 38 64 24 65 24 64 46 
cs' = (001):(101) 38 29 38 47 39 15 38 41 
s'r' = (101):(201) 25 9 25 37 26 9 26 5 . 
r'a = (201):(100) 41 17 41 37 41 44 42 16 

C ap = (100):(110) 35 37 35 21 34 48 35 14 

> VP = (110):(120) 19 28 19 28 19 28 19 28 
s 

P'b = (120):(010) 34 55 35 11 35 44 35 18 
Ipb = (110):(010) 54 23 54 39 55 12 54 46 

f cq = (001):(Oil) 25 55 25 43 25 24 25 26 
Iqb = (Oil):(010) 64 5 64 17 64 36 64 34 

' ao = (100): (111) 49 6 48 23 47 30 47 52 
oq = (111): (Oil) 27 31 27 13 27 4 26 47 

i n 
1 20' 

= (100):(Oil) 76 37 75 36 74 34 74 39 
= (Oil):(111) 34 41 34 59 35 26 34 57 

[ da = (111): (100) 68 42 69 25 70 0 70 24 

f CO = (001):(111) 34 50 34 20 33 54 33 45 
op = (111):(110) 43 5 42 40 42 6 42 24 

I cp = (001):(110) 77 55 77 0 76 0 76 9 
po' = (110):(111) 57 22 58 3 58 42 58 56 

[ o'c = (111):(001) 44 43 44 57 45 18 44 55 

J 'bo = (010):(111) 70 7 70 26 70 52 70 43 
1 os = (111): (101) 19 53 19 34 19 8 19 17 

J 'bo' = (010):(Ill) 65 13 65 12 65 17 65 11 
1 .o's' = (111): (101) 24 47 24 48 24 43 24 49 

'sq = (101):(Oil) 38 16 37 51 37 29 37 18 
IV = (Oil):(110) 86 12 87 14 88 29 88 11 

JJS = (110):(101) 55 32 54 55 54 2 54 31 

'sq = (101):(Oil) 45 15 45 23 45 37 45 11 
ip = (Oil):(110) 63 43 63 0 62 24 62 21 

.Vs' = (110):(101) 71 2 71 37 71 59 72 28 

r'o = (201):(Ill) 34 44 35 4 35 22 35 23 

\ dp = (111): (110) 92 55 92 30 92 25 91 48 
1 .pr’ == (110):(201) 52 21 52 26 52 13 52 49 

Eeplaeement. Average change. Maximum change. 

Iv by Eb. 27 66 = 1 6 
K bv Os. 56 137 = 2 17 
K by NH4. 52 127 = 2 7 
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Cleavage.— The common cleavage of the series parallel r {201} is well developed in 

this salt. No trace of the b {010} cleavage found on the nickel ammonium salt was 

discoverable on the cobalt salt. 

Volume. 

Relative Density.— -Five determinations by the immersion method gave the followin 

results:— 

I. Density for 16°*8/4° . . . 1-9000 For 20°/4° . . . 1*8994 

II. 17°l/4° . . . 1-9006 „ 20°/4° . . . P9001 

HI. 16°-2/4° . . . P9037 ,, 20°/4° . . . 1*9030 

IV. 16°'3/4° . . . 1*9016 „ 20°/4° . . . 1-9009 

V. 16°*8/4° . . . 1 "9014 2074° . . . 1*9008 

Mean . 1*9008 

The value accepted for 20" jV is P901. 

Pekrot (loc. cit.) records three determinations of the density of this salt, the values 

obtained being 1'895, P892, and 1*862, and gives as his accepted mean P88. 

Molecular Volume.— ^ — 206‘40. Pekrot gives 210. 
d 1 '901 

Molecular Distance Ratios (topic axial ratios).—- 

X : \]r : « = 61860 : 8*3753 : 41667. 

Redeterminations of Densities of Alkali-Metal-Cobalt Salts. 

Potassium Cobalt Sulphate, K0C0 (S04)2.6H20. 

I. Density for 15°*3/4° . 2*2196 For 20°/4° . . . 2*2186 

II. 15--1/4" . . . 2*2203 to
 

0
 0
 

0
 

. 2*2192 

III. „ 15°*2/4° . . . 2*2175 „ 20°/4° . . . 2*2164 

IV. „ 15°*7/4° . . . 2*2211 to
 

0
 0
 

0
 

. 2*2201 

Y. ,, 16°*9/4° . . . 2*2213 „ 2074° . . . 2*2206 

Mean . . 2*2190 

The value accepted for 20°/4° is 2*219 

Rubidium Cobalt Sulphate, ftb2Co (S04)2.6IPO. 

I. Density for 13°*6/4° . . . 2*5676 For 20°/4° . . . 2*5660 

II. 15U/4" . . . 2*5679 2074” . . . 2*5666 

III. „ 15c'*0/4° . . . 2*5684 „ 2074° . . . 2*5671 

IY. „ 15°*2/4° . . . 2*5676 „ 20°/4° . . . 2*5664 

Mean . . 2*5665 

'he value accepted for 20°/V is 2*567. 

VOL. CCXVI.-—-A. D 
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CcBsium Cobalt Sulphate, Cs2Co (S04)2. 6H20. 

I. Density for 16°7/4° . . . 2T468 For 20°/4° . . . 2-8459 

■ II. „ 16°7/4° . . . 2-8444 „ 20°/4° . . . 2-8435 

III. „ l7"7/4” . . . 2-8439 „ 20°/4° . . . 2-8432 

IV. ,, 18°T/4° . . . 2-8436 „ 20”/4° . . . 2-8431 

Mean . . . 2-8439 

The value accepted for 20°/4° is 2'844. 

The former pyknometer values for potassium, rubidium, and ceesium cobalt sulphates 

were 2'212, 2"557, and 2'837 respectively. The new values all being higher are 

certainly nearer the truth. 

The next table affords a comparison of the volume constants of all four cobalt- 

containing salts. 

Volume Constants of the Cobalt Group. 

Salt. 
Molecular ' 

weight. 
Specific 
gravity. 

Molecular 
volume. 

Topic axial ratios. 

KCo sulphate . . 434-21 2-219 195-68 
X = l w 

6-0405 : 8-1583 : 4-1093 
EbCo 526-31 2-567 205•03 6-1494 : 8-3201 : 4-1692 
NH,Co 5) 392-37 1-901 206-40 6-1860 : 8-3753 : 4‘1667 
CsCo J5 620-31 2-844 218-11 6-2386 : 8'5814 : 4‘2632 

It shows that the position of the ammonium salt as regards both molecular volume 

and topic axial ratios is close to that of the rubidium salt ; the molecular volume and 

the ratios x and f are slightly higher, and the ratio w slightly lower. 

Optics. 

Orientation of the Optical Ellipsoid.—-The symmetry plane b {010} is the plane of 

the optic axes. The double refraction is positive, the first median line corresponding 

to the refractive index y, and the second median line to a. Two section plates 

parallel to the symmetry plane afforded the following extinction angles :•— 

Inclination of 2M.L. from normal to c {001}. 

Plate I. . . . 10° 38' Plate II. . . . 10° 48' 

Mean . . . 10° 43'. 

The direction is behind the normal, towards axis c. 

Murmann and Potter obtained 11° O' for this extinction angle, and Senarmont 

gives it as 12' O'. 
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As the axial angle ac = 72° 58', this extinction direction of the second median line 

is 6° 19' in front of the vertical axis c, and the first median line is 10° 43' above the 

axis a, both median lines being in the obtuse angle of the morphological axes ac. The 

positions of the optical ellipsoids of all four cobalt-containing salts are compared in 

the following table, and are graphically expressed in the accompanying fig. 5. 

Inclinations of a Axis of Indicatrix (2M.L.) of the Cobalt Salts in 

front of Axis c. 

AmCo sulphate 6 19' 

KCo „ 10° 5' 

RbCo „ 16° 1' 

CsCo „ 26° 8' 

The ammonium salt ellipsoid lies with its a axis nearest the vertical axis c, and the 

ellipsoid rotates further away from this position as 

ammonium is replaced by potassium, rubidium, and 

caesium in turn, according to the order of the atomic 

weights of those alkali metals. 

(iOO) 

iefractive Indices.—The following table gives the 

results of measurements with six excellent 60°-prisms, 

each ground accurately to afford two indices directly, 

the prism edge and bisecting plane being parallel to 

a principal axis and principal plane of the indicatrix. 

There is considerable absorption in the green and blue 

parts of the spectrum, but the illumination of the 

images of the spectrometer slit for Tl, Cd and F light 

was quite adequate to ensure accuracy, using the electric arc with the monochromatic 

illuminator, as usual. 

Fig. 5. 

Refractive Indices of Ammonium Cobalt Sulphate. 

Light. OL. A 7- 

Li. 1-4871 1-4922 1-5001 
C. 1-4876 1-4927 1-5006 
Na. 1-4902 1-4953 1-5032 
Tl . . . 1-4930 1-4982 1-5060 
Cd. 1-4946 1-4998 1-5076 
F. 1-4964 1-5014 1-5094 
G. 1-5018 1-5067 1-5148 

Mean of a, /3, and y for Na light = 1 ‘4962. 

a = Vibration direction parallel to second median line, 6° 19' in front of axis c. 

fi = . „ „ „ ,, symmetry axis b. 

y = „ „ ,, „ first median line. 
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Mxjemann and Rotter found indirectly for yellow light a = 1*489, /3 = 1*494, 

and y = 1 ‘501 ; also f3 for red light = 1'492, and for green light = 1*497. 

General Formula for /3, corrected to a vacuum :—- 

0 , .,ooc , 441 773 , 449 400 000 000 , 
/3 = 1 4826 +—^^-+ ... 

The index a is reproduced also by the formula if the constant 1*4826 is diminished 

by 0*0051, and y if it is increased by 0*0079. 

Observations at 70° showed that the refractive indices of ammonium cobalt sulphate 

are diminished by about 0*0020 (for a) to 0*0025 (for y) by 55° rise of temperature. 

In the next table the refractive indices of the four cobalt-containing salts are 

compared. 

Comparison of the Refractive Indices. 

Index. Light. KCo 
sulphate. 

EbCo 
sulphate. 

NH4Co 
sulphate. 

■ 

CsCo 
sulphate. 

r Li. 1-4780 1-4833 1-4871 1-5028 
C. 1-4784 1-4837 1-4876 1-5032 
Na. 1-4807 1-4859 1-4902 1-5057 

“ • • ■ ■ 1 T1. 1-4830 1-4882 1-4930 1-5079 
F. 1-4861 1-4910 1-4964 1-5112 

i Cl. 1-4904 1-4954 1-5018 1-5159 

- Li. 1-4838 1-4889 1-4922 1-5057 
C. 1-4842 1-4893 1-4927 1-5061 

Q Na. 1-4865 1-4916 1-4953 1-5085 
p . . . . - T1. 1-4889 1-4940 1-4982 1-5110 

F. 1-4919 1-4968 1-5014 1-5142 

i G. 1-4961 1-5011 1-5067 1-5188 

r Li. 1-4973 1-4985 1-5001 1-5102 
C. 1-4977 1-4989 1-5006 1-5106 
Na. 1•5004 1-5014 1-5032 1-5132 
Ti. 1-5028 1-5038 1-5060 1-5156 
F. 1-5059 1-5068 1-5094 1-5187 

l G. 1-5105 1-5114 1-5148 1-5237 

Mean refractive index l (a + B + y) 

C
G

 

0
0

 1-4930 1-4962 1-5091 
for Na light 

Double refraction, NaY_a . , . . 0-0197 0-0155 0-0130 0-0075 

The refractive indices of the ammonium salt, which are concisely represented by the 

mean index given at the foot of the table, are slightly higher than those of the 

rubidium salt, and the double refraction is slightly less than that of the rubidium 

salt, the ammonium salt thus standing between the rubidium and caesium salts as 

regards both properties, and much nearer to the rubidium salt. 
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Axial Ratios of the Optical Ellipsoid.—These are given in the next table, both for 

the ammonium salt now described and for the three alkali-metal salts previously 

described. The comparison shows that the dimensions of the optical ellipsoid (either 

form) of the ammonium salt are also intermediate between those for the rubidium and 

Caesium salts, and much nearer to those for the rubidium salt. 

Axial Ratios of the Optical Indicatrix. 

X P : 7 a : P 7 

KCo sulphate . . (T9961 1 1*0094 0-9961 : 1 1*0094 

RbCo ,, . 0-9962 1 1-0066 0-9996 U0034 1*0100 

NH4Co „ . 0'9966 1 1-0053 1-0025 1*0059 1*0113 

CsCo . 0-9981 U0031 1-0129 1*0148 1*0180 

Axial Ratios of the Optical Yelocity Ellipsoid. 

a b c a b c 

KCo sulphate . . 1'0039 1 0-9907 1-0039 1 0-9907 

RbCo ,, . . . 1-0038 : 1 : 0-9935 1*0004 0-9966 0-9901 

NH4Co „ . . . 1*0034 : 1 : 0*9947 0-9975 0'9941 0-9889 

CsCo „ . . . 1-0019 : 1 : 0-9969 0-9872 0-9854 0*9823 

Molecular Optical Constants.—These are given in the next three tables for all 

four salts of the cobalt group. The newly determined densities were employed in 

recalculating the values for the three alkali-metal salts. The specific refraction and 

. dispersion of the ammonium salt are considerably higher than those of the three salts 

containing the alkali metals. The molecular dispersion of the ammonium salt is 

slightly higher than that of the caesium salt. The molecular refraction, either of 

Lorenz or Gladstone and Dale, is invariably just higher than that of the rubidium 

salt, a fact which is very clearly demonstrated by the mean molecular refraction given 

in the last column of the third table. 

Table of Specific Refraction and Dispersion (Lorenz). 

Sulphate. 

Specific refractio 
n2- 1 

Specific dispersion. 
uG - nc. 

(n2 + 2) cl 

For ray C (Ha). For ray Hy near G. 

x. P- 7- x. P- 7- x. 
* y- 

AmCo . . . 0-1515 0-1528 0-1549 0-1552 0'1565 0-1586 0-0037 0-0037 0-0037 
KCo. . . . 0-1277 0-1290 0-1320 0-1304 0-1317 0-1319 0-0027 0-0027 0-0029 
RbCo . . . 0-1144 0-1125 0-1144 0-1137 0-1148 0-1168 0-0023 0-0023 0-0024 
CsCo. . . . 0-1040 0-1045 0-1053 0-1062 0-1067 0-1075 0-0022 0-0022 0-0022 
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Table of Molecular Refraction and Dispersion (Lorenz). 

Salt. 

Molecular refractic 
n2 - 1 M 

A = m- 
Molecular dispersion. 

mG - mc. 

’ n2 + 2 

For ray C (Ha)- For ray Ely near G. 

a. ft. y- CL. ft- 7- CL. ft. 7- 

KCo sulphate 55-43 56-00 57-33 56-61 57-17 58-57 1-18 1-17 1-24 
RbCo 58-63 59-20 60-19 59-83 60-41 61-48 1-20 1-21 1-29 
AmCo 59-43 59-95 60-77 60-89 61-40 62-22 1-46 1-45 1-45 
CsCo 64-50 64-81 65-30 65-87 66-18 66-71 1-37 1-37 1-41 

Molecular Refraction (Gladstone and Dale). 

n ^ M for ray C. 
cl J Mean molecular 

Salt. refraction for ray C. 
i (cc + ft + y). 

a. ft- 7- 

KCo sulphate. 93-61 94-75 97 • 35 95-24 
RbCo ,,. • 99-17 100-32 102-29 100-59 
AmCo ,,. 100-64 101-70 103-33 101-89 
CsCo ,,. 109-75 110-39 111-37 110-50 

Optic Axial Angle,—-The results with three pairs of section-plates perpendicular 

to the first and second median lines are given in the two next tables. The angle in 

air, although very large, was just clearly visible in all three of the plates ground 

perpendicular to the first median line, but the absorption at the blue end of the 

spectrum prevented trustworthy observations being obtained beyond the wave-length 

of T1 light. 

Apparent Optic Axial Angle in Air, 2E, of AmCo Sulphate. 

Light. Plate 1. Plate 2. Plate 3. Mean 2E. 

Li. 

o / 

156 1 157 34 

o / 

155 16 

o / 

156 17 
C. 156 20 157 51 155 34 156 35 
Na. 158 32 159 52 157 29 158 38 
T1. 160 40 162 0 159 40 160 47 

A determiuation of 2E at 70° with Plate 1 gave the value 153° 5' for sodium light, 

indicating that the optic axial angle in air diminishes with rise of temperature to 

the extent of 5|-° for 55° of rise. 



MONOCLINIC DOUBLE SULPHATES CONTAINING AMMONIUM. 23 

Determination of True Optic Axial Angle in Bromonaphthalene. 

Light. 

Li . 

C . 

Na. . . 

T1 . 

Cd . . 

F . . . .■ 

No. of plate 
perp. 1 M.L. 

Observed 
2Ha. 

No. of plate 
perp. 2 M.L. 

Observed 
2H0. 

Calculated 
2Va. 

Mean 
2Va. 

1 72 31 la 

o / 

85 46 

o / 

81 594 

o / 

2 72 53 2 a 85 51 82 12 )■ 82 1 
3 72 29 3a 85 55 81 53 J 

1 72 30 la 85 43 82 0 4 
2 72 51 2 a 85 46 82 13 } 82 2 
3 72 27 3a 85 50 81 54 J 

1 72 18 la 85 16 82 6 4 
2 72 43 2 a 85 22 82 20 82 9 
3 72 16 3 a 85 22 82 2 J 

1 72 9 la 84 48 82 164 
2 72 35 2 a 84 58 82 28 V 82 17 
3 72 4 3 a 84 57 82 8 J 

1 72 3 la 84 33 82 20 4 
2 72 29 2a 84 43 82 32 y 82 21 
3 71 58 3a 84 42 82 12 J 

1 71 56 la 84 14 82 26 | 
2 72 22 2a 84 24 82 38 } 82 27 
3 71 51 3 a 84. 23 82 17 J 

Murmann and Rotter obtained 155° 12' for 2E, and 81° 39' for 2Va (no specific 

Wave-length). 

Dispersion of the Median Lines.—-The inclined dispersion is very minute, and is 

such that the first median line is nearer to the axis a by about eight minutes for red 

C-hydrogen light than for green thallium light. The determinations were carried 

out with Plates 1, 2 and 3 immersed in toluene, the refractive index of which (l’4955) 

is almost identical with the mean refraction (l'4962) of ammonium cobalt sulphate. 

Optic Axial Angles 2Va of the Cobalt Group. 

KCo sulphate. BbCo sulphate. CsCo sulphate. AmCo sulphate. 

Li. 

° r 

■ 68 38 

o / 

75 15 

o / 

81 42 

o / 

82 1 
C. 68 39 75 14 81 40 82 2 
Na. 68 41 75 11 81 34 82 9 
T1. 68 44 75 8 81 29 82 17 
F. 68 48 75 3 81 22 82 27 

The last table comparing the optic axial angles of the four cobalt-containing 

salts shows that the angle of the ammonium salt is just slightly greater than that of 

the cresium salt. All four salts are positive. 
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Ammonium Manganese Sulphate, (NH4)2 Mn(S04)2 . 6H20. 

Morphology. 

Crystals of this salt were measured by Murmann and Rotter (loc. cit., p. 148), and 

also to some extent by Grailich* and by ScAcemf. The results of Mtjrmann and 

Rotter are given in the next to the last column of the table of angles, and those of 

Grailich (G) and of Scacchi (S) in the last column. 

Crystal System.—Monoclinic. Class No. 5, holohedral-prismatic. 

Ratios of Axes.—a :h : c — 07400 : 1 : 0‘4931. Values of Murmann and Rotter, 

07359 : 1 : 0'4972. 

Axial Angle.—(3 = 106° 51'. Value of Murmann and Rotter, 107° 2'. 

Forms observed.—a{l00}, h { 010 }, c{00l}, p {110}, p'{l20}, p"'{\2>0}, q {Oil}, 

r'{2l0}, o {111}, o'{Til}. Murmann and Rotter also found a minute face of 

n' {121} on one crystal. 

Habit.—Prismatic (primary prism j»{ll0}) parallel axis c. The prisms are 

sometimes fairly long, but more frequently short. 

Ten good crystals were measured, obtained from five different crops. The results 

are given in the table of angles. The crystals were beautifully transparent in the 

crops retained for use, but some other crops showed an appreciable amount of 

turbidity. They are not quite colourless, a faint pink tint appearing to be an 

essential property of the salt which in the cases of truly transparent crystals renders 

them very beautiful, especially when a number are seen together against a white 

background. Great care is required in growing them for goniometrical purposes, as 

crops grown without the precautions indicated in the author’s “ Crystallography and 

Practical Crystal Measurement ” (p. 9) show more facial irregularities than many 

other salts of this series. 

The primary prism p {110} is generally the largely predominating 

form, closely followed by the basal plane c {001}, as shown in fig. 1. 

Often, however, the latter form c is less prominent, the faces of 

q {011} being relatively larger and the orthopinakoid r'{20l} being 

exceptionally well developed, as shown in fig. 6. Occasionally 

crystals were also seen, and one was measured, having large b {010} 

faces. The hemipyramid faces o' {ill} (common) and o {ill} (rarer) 

were usually somewhat distorted, rarely giving images of the signal 

so good as those derived from the faces of other forms. The 

prismatic form p'{l20} was fairly common, appearing as a strip, but 

the prism p"'{ 130} was much more rarely developed. The orthopina¬ 

koid a {100} was only once seen, and was then merely a fine narrow strip affording an 

image too faint for absolute measurement. The face n'{T21} recorded by Murmann 

* ‘ Krystallogr.-optische Untersuehungen, Preiaschr. Wien,’ 1858, 140. 

t ‘II Giambattista-Vico, Giomale Scientifico,’ Naples, 1857, fasc. 6, sep. 9. 
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Interfacial Angles of Ammonium Manganese Sulphate. 

No. of 
measure¬ 
ments. 

Mean Calcu- 
Values of 

Angle. Limits. Diff. observed. bated. 
M. & It. j G. & S. 

ac = (100):(001) __ _ 
o / 

73 9 72 58 
o / 

71 42 G. 
as = (100):(101) -— — — 45 1 — — — 
sc = (101):(001) — — — 28 8 — — — 

1 cr = (001):(201) 10 64 7- 64 25 1 64 15 64 19 4 64 18 — 
cs = (001):(101) — — — 38 20 — 1 — ■ — 
sr = (101):(201) — — — 25 59 -— — — 
rci = (201):(TOO) — — — 42 32 — 42 6 — 
re = (201):(001) 10 115 33-116 0 115 45 115 41 4 — — 

rap 

pp 

= (100):(110) — -- — 35 18 — 35 40 — 
= (110):(120) 8 19 17- 19 33 19 27 19 28 1 19 17 — 

p’l = (120):(010) 2 35 8- 35 22 35 15 35 14 1 35 25 —- 

PP" = (110) :(130) — — — 29 29 — — — 
p"'b = (130):(010) i — 25 19 25 13 6 25 45 — 
pb = (110):(010) 40 54 36- 54 55 54 42 * — 54 57 — 

[pp = (110):(110) 21 70 22- 70 47 70 35 70 36 1 70 16 f 70 35 G. 
I 70 32 S. 

rcq = (001):(Oil) 29 25 4- 25 33 25 16 * — 24 35 
f24 55 G. 
I 25 13S. 

L qb = (Oil):(010) 18 64 31- 64 48 64 44 64 44 0 — — 

ao = (100) : (HI) — — — 48 8 — — — 
oq = (111) : (Oil) — — — 26 40 — — — 
aq = (100):(Oil) — — — 74 48 — — — 
qo = (Oil):(111) 1 — 34 34 34 38 4 — — 
o'a = (Ill):(TOO) — — — 70 34 — — — 

f CO = (001):(111) 1 — 33 41 33 38 3 — — 
1 op = (HI) : (110) 1 —- 42 40 42 41 1 — — 

ICP = (001):(110) 40 76 13- 76 30 76 19 * — — 76 24 S. 

1 po = (110): (111) 21 58 49- 59 24 59 4 59 10 6 — — 

\ V°'c = (111):(001) 20 44 27- 44 52 44 38 44 31 7 — — 

'bn = (010):(121) — — — 55 6 — — -— 

J no - (121): (111) — — 15 40 -— — — 
s bo = (010):(111) — — — 70 46 — — — 
Los = (111): (101) _ — — 19 14 — — — 

[bo = (010):(Ill) 1 — 65 16 65 21 5 — — 

< dd = (Ill):(101) -— — — 24 39 — — — 
. o'o' = (HI) : (HI) 1 — 49 25 49 18 7 — — 

f S(L = (101):(Oil) — — — 37 6 — •— — 

< qp = (Oil):(110) 24 87 57— 88 28 88 9 88 8 i — — 
> ps = (110):(101) —- - — 54 46 — — — 

Ipq = (110):(Oil) 24 91 40- 92 4 91 50 91 52 2 — — 

[s'q = (101):(Oil) — — — 44 49 — — — 

1 9:n = (Oil):(121) — —- — 26 3 — — — 

_
A

- = (121):(110) — — — 36 31 — — — 
= (Oil):(110) 25 62 24- 62 42 62 33 62 34 i — — 

1 K = (110):(101) — — — 72 37 — — — 
l n = (110):(Oil) 24 117 23-117 41 117 28 117 26 2 - -— 

r/d = (201):(Ill) 11 34 51- 35 24 35 7 35 13 6 35 25 — 
< °'P = (Ill):(110) 16 91 34- 92 5 91 50 91 45 5 91 47 — 
Ik = (110):(201) 24 52 52- 53 26 53 6 53 2 4 52 22 -- 

Total number of 
measurements . 37 3 

VOL. ccxvi.—-A. E 
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and Rotter was never seen on ttiis salt, although the author has observed it on other 

salts of the series. 

In the next three tables the morphological constants of the three salts containing 

manganese are compared. From the first table it will be observed that the axial 

angle ft of the ammonium salt is fairly near to that of the csesium salt, and that the 

axial ratios of the ammonium and rubidium salts are also close to each other : the 

values for the ammonium salt clearly indicate the propriety of including this salt in 

this isomorphous series of double salts. 

The impossibility of preparing potassium manganese sulphate renders as complete a 

comparison as usual of the interfacial angles of a group impossible ; but the angles of 

the ammonium salt are very obviously related to those of the rubidium and csesium 

salts in a manner similar to that which has been observed in the other groups 

investigated, where the complete set of four salts has been obtained. Like the axial 

ratios, the angles indicate clearly that the ammonium salt does belong to the same 

series as the rubidium and csesium salts. 

Cleavage.—There is an excellent cleavage parallel to the orthopinakoid r'{201}, 

and also a fairly good cleavage parallel to the clinopinakoid b {010,. 

Comparison of the Axial Angles and Axial Katios. 

Axial angle. Axial ratios. 

ft. a : h : c 
Rubidium manganese sulphate . 105° 57' 0-7382 : 1 :0-4950 
Ammonium ,, „ 106° 51' 0-7400 : 1 :0-4931 
Csesium ,, ,, 107° 7' 0-7274 : 1 :0-4913 

Comparison of the Interfacial Angles. 

Angle. RbMn sulphate. CsMn sulphate. Am Mn sulphate. 

ac = (100) : (001) 

o / 

74 3 

o / 

72 53 

o / 

73 9 
as = (100) : (101) 45 27 44 37 45 1 
sc = (101) : (001) 28 36 28 16 28 8 

< cr = (001) : (201) 63 58 64 55 64 19 
cs = (001) : (101) 38 23 38 48 38 20 
s'r = (101) : (201) 25 35 26 7 25 59 
r'a = (201) : (100) 41 59 42 12 42 32 

[ap =(100): (110) 35 20 34 51 35 18 

J pp =(110): (120) 19 28 19 28 19 28 

1 p'b = (120) : (010) 35 12 35 41 35 14 
L pb = (1]0):(010) 54 40 55 9 54 42 

jcq =(001): (Oil) 25 30 25 11 25 16 
\qb =(011): (010) 64 30 64 49 64 44 
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Comparison of the Interfacial Angles (continued). 

Angle. RbMn sulphate. CsMn sulphate. AmMn sulphate. 

[ ao = (100) : (111) 

o 

48 34 

o r 

47 43 48 8 

1 °9 = (in) (Oil) 27 4 26 50 26 40 

Ui = (100) (011) 75 38 74 33 74 48 
1 qo' = (011) (111) 34 40 35 5 34 38 
{ o'a = (111) (100) 69 42 70 22 70 34 

f CO = (001) (111) 34 6 33 38 33 38 
1 op = (111) (HO) 42 57 42 23 42 41 

I CP = (001) (HO) 77 3 76 1 76 19 

I P0' = (110) (HI) 58 25 59 8 59 10 
1 o'c = (111) (001) 44 32 44 51 44 31 

[bo = (010) (111) 70 34 70 58 70 46 
{os = (111) (101) 19 26 19 2 19 14 

[bo = (010) (111) 65 25 65 27 65 21 
[o's' = (111) (101) 24 35 24 33 24 39 

f sq = (101) (011) 37 35 37 9 37 6 

i qp = (011) (110) 87 20 88 36 88 8 
Ip = (110) (101) 55 5 54 15 54 46 

fs'q = (101) (Oil) 44 58 45 9 44 49 

5 9P = (011) (110) 63 10 62 30 62 34 
\ps' = (110) (101) 71 52 72 21 72 37 

[/O' = (201) (111) 34 54 35 14 35 13 
5 °'V = (111): (110) 92 26 92 13 91 45 
Ip-' = (110) (201) 52 40 52 33 53 2 

Volume. 

Relative Density.—-Five determinations by 

following results :— 

the immersion method yielded the 

I. Density for 1G ‘2/4° . 1-8324 For 20°/4° . . . 1*8317 

II. „ 15°‘7/4° . . . 1-8300 „ 20°/4o . . . F8292 

III. „ 16°-l/4° . . 1—
1 

oo
 

CO
 

i—
1 

C
O

. 

„ 2074“ . . . 1*8312 

. IV. „ 17°‘6/4° . . . D8312 „ 2074” . . . F8308 

V. „ 17°‘3/4° . . . D8329 „ 2074° . . . 1-8324 

Mean . . . 1 '8311 

Accepted value for 20 /4°, 1'831. 

A determination by Schroeder# gave the density I‘825. 

Molecular Volume.— —; = — = 212*13. 
d 1-831 

* 1 Journ. fur Prakt. Chemief 1879, [2], 19, 266. 



28 DR. A. E. H. TUTTON ON THE 

Molecular Distance Ratios {topic axial ratios).— 

X ' f • 0J ~ 6'2670 : 8'4690 : 4‘1761. 

Redeterminations of Densities of Rubidium and Caesium Manganese Sulphates. 

Rubidium Manganes e Sulphate, RffMn (S04)2. 6H20. 

I. Density for 14 '9/4° . 2'4617 For 20°/4° . . . 2'4605 

IT. 

o <
-0

 

o 

. 2'4613 „ 20°/4° . . . 2'4604 

III. ,, 16°'l/4° . . . 2'4607 

o —b 
0

 O
 

CM 2'4597 

IV. „ 16°'6/4° . . . 2'4622 

o o CM 2'4614 

Mean . 2'4605 

?cepted value for 20 /4°, 2'461. Former pyknometer value 2'459. 

C Vesium Manganese Sulphate, 1 OsoMn (S04)2. 6H20. 

I. Density for 18 '9/4 . 27397 For 20°/4° . . . 27394 

II. 19°'3/4° . . . 27420 

o -b 
o

 o
 

(M
 27418 

Ill. ,, 19°'7/4° . . . 27409 „ 2074" . . . 27408 

IV. „ L7q'2/4° . . . 27373 ID
 0
 

*-
 0
 

27365 

Mean . . . 2'7396 

Accepted value for 20°/4°, 2740. Former pyknometer value 2'738. 

The next table affords a comparison of the volume constants of the three salts, 

employing the new densities. 

Volume Constants of the Manganese Group. 

Salt. 
Molecular 

weight. 
Specific 
gravity. 

Molecular 
volume. 

Topic axial ratios. 

RbMn sulphate . 522-36 2-461 212-26 
X ; 

6-2404 : 8•4536 
CO 

4-1846 
NH4M11 388-42 1-831 212-13 6-2670 : 8-4690 4-1761 
CsMn O • 616-36 2-740 224-95 6-3286 : 8-7004 4-2745 

From this table it will be apparent that the molecular volume and topic axial ratios 

of ammonium manganese sulphate are very close to the values of these constants for 

the rubidium salt. The molecular volume and the ratio a> are very .slightly lower, and 

the ratios x and f slightly higher. 

Optics. 

Orientation of the Optical Ellipsoid.—-The symmetry plane h {010} is the plane of 

the optic axes, and the sign of double refraction is positive. The first median line is 

the axis y of the optical indicatrix, and the second median line corresponds to the 

a refractive index. 
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A pair of section-plates parallel to the symmetry plane afforded the following angles 

for the extinction direction corresponding to the second median line 

Inclination of 2M.L. from normal to c 1001 

Plate 1 . . . 9° 24' Plate 2 . . . 9° 6' 

Mean . . . 9° 15' 

The direction is behind the normal. As the axial 

angle ac = 73° 9' this extinction direction is 7° 36' in 

front of the vertical axis c, and the first median line 

extinction is 9° 15' above the axis a, both axes of the 

optical indicatrix which lie in the symmetry plane 

being thus in the obtuse angle of the morphological 

axes ac. Mhumann and Rotter found the two 

extinctions 8° 36' in front of c, and 8° 26' above a. 

In the next table the positions of the optical indi¬ 

catrix of the three manganese salts are compared, 

and in fig. 7 they are graphically illustrated. 

C* 

Inclinations of a Axis of Indicatrix (2M.L.) of the Manganese Salts in front of Axis c. 

AmMn sulphate 7° 36' 

KbMn „ 16° 57' 

CsMn ,, 25° 27' 

Although the potassium salt is missing, the relations of the indicatrices of the 

ammonium, rubidium, and caesium manganese salts are similar to what has been 

observed in groups which are complete, the ammonium salt indicatrix standing with 

its a-axis nearest to the vertical axis of the crystal c. 

Refractive Indices.—The results with six prisms, each ground so as to afford 

directly two indices, are given in the accompanying table. 

Refractive Indices of Ammonium Manganese Sulphate. 

Light. a. P- 7- 

Li. 1 -4770 1-4810 1•4882 
C. 1-4775 1-4815 1-4887 
Na . '. 1-4801 1-4840 1-4913 
T1. 1-4827 1-4865 1-4940 
Cd. 1-4842 1-4881 1-4956 
F. 1-4858 1-4897 1-4971 
G. . . . 1-4912 1-4951 1-5025 

Mean of a, /3, and y for Na light = 1 ‘4851. 

a = Vibration direction parallel to second median line, 7' 36' in front of axis c. 

ft = ,, ,, ,, ,, symmetry axis b. 
y = ,, ,, ,, ,, first median line. 
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Murmann and Rotter obtained for in red light 1'482, in yellow light L '484, 

and in green light I’485. 
9 

General Formula for /3, corrected to a vacuum :— 

1*469.1 + 
633 924 

A2 

3 568 840 000 000 

A4 

The index a is also reproduced hy the formula if the constant 1'4691 is diminished 

by 0'0039, and the y index if the constant is increased by 0'0073. 

Observations at 70° showed that the refractive indices of ammonium manganese 

sulphate diminish by about 0'0019 (for a) to 0'0021 (for y) for 55° rise of temperature. 

In the next table the refractive indices of the three salts containing manganese are 
O c3 

compared. 

Comparison of the Refractive Indices. 

Index. Light. 
RbMn 

sulphate. 
NH,Mn 
sulphate. 

CsMn 
sulphate. 

( Li. 1-4741 1-4770 1-4918 
C. 1-4745 1-4775 1-4922 

i 
a J 
j. . . . • ] 

Na. 1-4767 1-4801 1-4946 
T1. 1-4791 1-4827 1-4972 

I F. 1-4821 1-4858 1-5003 

l G. 1-4864 1-4912 1•5046 

r Li. 1-4781 1-4810 1-4936 
C. 1-4785 1-4815 1-4940 

ft.... \ 
Na. 1-4807 1-4840 1-4966 
T1. 1-4831 1-4865 1-4991 

1 F. 1-4860 1-4897 1-5022 
l G. 1-4907 1-4951 1-5066 

f Li. 1-4880 1-4882 1-4995 
C. 1-4884 1-4887 1-4999 

y < 
Na. 1-4907 1-4913 1•5025 
T1. 1-4933 1-4940 1-5051 

1 F. 1-4965 1-4971 1-5083 
l G. 1-5015 1-5025 1-5129 

Mean refractive 
Na light 

index i (a + /3 + y) for 1-4827 1-4851 1•4979 
. 

Double refraction, Nay_a. 0-0140 0-0112 0-0079 

The position of the ammonium salt as regards refractive indices is precisely similar 

to that in the nickel and cobalt groups already dealt with, namely, just beyond that 

of the rubidium salt, the indices of which are only very slightly lower. The 

ammonium salt also occupies an intermediate position between the rubidium and 
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caesium salts as regards double refraction, the value being slightly nearer to that of 

the rubidium salt. 

Axial Ratios of the Optical Ellipsoid.—These are given in the next table, and 

compared with the corresponding values for rubidium and caesium manganese 

sulphates. 

Axial Ratios of 

Optical Indicatrix. Optical Velocity Ellipsoid. 

* . : P ■ 7 a : t : r 

RbMn sulphate . . 00973 : I : I‘0067 1*0027 : 1 : 00933 

NH4Mn „ . . . 09974 : I : I"0049 f'0026 : 1 : 00951 

CsMn ,, . . . 0-9987 : 1 : U0039 10013 : 1 : 00961 

The values when for the same salt = 1 show a similar arrangement as in the 

groups previously described, with the ammonium salt intermediate between the 

rubidium and caesium salts. The potassium salt not existing, the values cannot be 

calculated on the basis of /3K saIt, = 1. 

Molecular Optical Constants.—These are given in the following three tables, and 

compared with the analogous values for the rubidium and caesium salts, using the 

newly determined values of the densities of the latter salts in the calculations for these 

salts. The specific refraction and dispersion of the ammonium salt again stand out 

prominently higher than those of the alkali-metal salts, and the molecular dispersion 

of ammonium manganese sulphate is slightly higher than that of the caesium salt. 

The molecular refraction, calculated by either formula, of the ammonium salt is just 

slightly higher than that of the rubidium salt, the relationship being very concisely 

expressed by the mean molecular refraction shown at the conclusion of the third 

table. 

Table of Specific Refraction and Dispersion (Lorenz). 

Sulphate. 

H2 — 1 
Specific refraction, — ——= n. 

Specific dispel 
11G - 11C. 

sion, 

For ray C (Hx). For ’av Hy near G. 

a. A | ' 7- a. P- 1 7- a. P- 7- 

Am Mn . 
RbMn . . 
CsMn . . . 

0 • 1545 
0-1143 
0-1059 

0-1556 ' 0-1576 
0-1151 0-1172 
0-1062 0-1073 

0-1582 
0-1167 
0-1082 

0-1593 0-1613 
0-1176 0-1198 
0-1085 0-1097 

0-0037 
0-0024 
0-0023 

0-0037 
0•0025 
0-0023 

0-0037 
0-0026 
0-0024 
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Table of Molecular Refraction and Dispersion (Lorenz). 

Salt-. 

Molecular refraction, —- 
nr + 2 

M 
At = 

Molecular dispersion, 
mG - mc. 

For ray C (Ha). For ray Hy near G. 

P- 7- a. P- 7- a. P- 7- 

RbMn sulphate 59-70 60-13 61-19 60-98 61-44 62-59 1-28 1-31 1-40 
AmMn 59•99 60•42 61-20 61-46 61" 87 62 ■ 66 1-47 1 -45 1-46 
CsMn ,, 65-29 65 -4S 66-15 66 ■ 67 66 • 90 67-60 1-38 1-42 1-45 

Molecular Refraction (Gladstone and Dale). 

Salt. 

11 1 AI for ray C. a Mean molecular 
refraction for ray C. 

Ha + P + 7)- 
cc. P- 7- 

RbMn sulphate. 
AmMn ,. ..... 
CsMn „ . 

100- 72 
101- 29 
110-72 

101- 56 
102- 14 
111-12 

103"65 
103-67 
112-45 

101- 98 
102- 37 
111-43 

Optic A.rial Angle.—-The determinations with three pairs of excellent section-plates 

are given in the two following tables. 

Apparent Optic Axial Angle in Air, 2E, of AmMn Sulphate. 

Light. Plate 1. Plate 2. Plate 3. Mean 2E. 

Li. 

O ' 

115 46 115 22 

o / 

114 57 115 22 
C. 115 58 115 31 115 6 115 32 
Na. 116 51 116 8 116 9 116 23 
T1. 117 18 116 53 116 50 117 0 
Cd. 117 43 117 2 116 59 117 15 
F. 118 5 117 25 117 10 117 33 
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Determination of True Optic Axial Angle in Bromonaphthalene. 

Light. 

Li 

C . . 

Na. . 

T1 . . 

Cd . . 

F . 

No. of plate 
perp. 1 M.L. 

Observed 
2IL, 

No. of plate 
perp. 2 M.L. 

Observed 
2 IL> 

1 

o / 

61 34 la 

o / 

94 26 
2 61 34 2 a 94 29 
3 61 29 3 a 94 24 

1 61 31 la 94 21 
2 61 32 2a 94 25 
3 61 28 3a 94 20 

1 61 18 la 93 52 
2 61 22 2 a 94 0 
3 61 21 3 a 93 53 

1 61 9 la 93 27 
2 61 13 2 a 93 25 
3 61 8 3a 93 26 

1 61 0 la 92 58 
2 61 5 2 a 92 59 
3 61 3 3 a 92 58 

1 60 50 la 92 38 
2 60 54 2 a 92 38 
3 60 54 3a 92 37 

Calculated 
2 Ya. 

Mean 
2Y 

69 47' 
69 45 
69 44, 

69 47' 
69 46 
69 45, 

69 48' 
69 48 
69 51. 

69 53' 
69 57 
69 53. 

69 58' 
70 2 
70 1 

70 O' 
70 3 
70 3 

69 45 

69 46 

69 49 

69 54 

70 0 

70 2 

Murmann and Rotter obtained for 2E 114° 45', and for 2Va 69u 9' (no wave-length 

specified). 

A determination of 2E at 70° with Plate 2 showed that the optic axial angle in air 

diminishes by about 4 for 55° rise of temperature. 

Dispersion of the Median Lines.—The inclined dispersion is again small in 

ammonium manganese sulphate, the first median line lying nearer by lCf only to the 

axis a for red lithium light than for greenish-blue F light. The determination was 

carried out by immersion of the Plates 1, 2, and 3 in toluene. 

The optic axial angle of ammonium manganese sulphate is shown in the following 

comparative table to be slightly larger than that of the rubidium salt. 

Optic Axial Angles 2Ya of the Manganese Group. 

AmMn sulphate. HbMn sulphate. 
| 

CsMn sulphate. 

Li. 

o / 

69 45 

o / 

67 10 

O f 

60 10 
C. 69 46 67 8 60 7 
Na. 69 49 67 5 59 57 
T1 . . . . 69 54 67 1 59 46 
F .... 70 2 66 55 59 28 

VOL. OCXVI.-A. F 
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Ammonium Copper Sulphate, (NH4)2 Cu (S04)2. 6H20. 

Morphology. 

Crystals of this salt were measured in the year 1835 by Miller,# who observed the 

forms a, c, p, q, r', and o', of those enumerated in the list of forms given below. 

Murmann and Plotter included the salt in their optical investigation of 1859 (loc. cit., 

p. 170), and observed the further forms h and p'; but they did not record any accurate 

measurements of the crystal angles. Miller’s values are quoted in the last column 

of the table of angles now given. 

Crystal System.—Monoclinic Class No. 5, holohedral-prismatic. 

Ratios of Axes.— 

a : h : c — 07463 : 1 : 07066. Values of Miller, 07433 : 1 : 0'4838. 

Axial Angle.—/3 = 106° 9'. Value of Miller, 106° 6b 

Forms observed.—ct {100}, b {010}, c {001}, p {110}, p'{l20}, p"'{l2>C\, q {Oil}, 

r'{20l}, o {111}, (/{Til}. 

Habit.—Short prismatic parallel to p {110}, or tabular parallel to c {001}. 

Eleven perfectly transparent crystals were measured of this beautiful pale blue salt, 

selected from seven different crops. They were of the two types shown in figs. 8 

and 9, and of intermediate types. 

Fig. 9. 

Many crystals of the numerous crops prepared were very simple, exhibiting only 

the forms c {001}, p {110}, q {Oil}, and r'{20l}. On numerous others small or 

narrow representatives of the other forms mentioned in the list of forms were present. 

On a good number of the crystals of the crops from which individuals were selected 

for measurement there were well developed faces of the clinopinakoid b {010}, the 

rarer prisms p'{ 120} andpw{l30}, and the hemipyramids o {111} and (/{Ill}. Traces 

only of the orthopinakoid a {100} were observed, no measurements being possible. 

The variation of the length of the faces of the prism zone causes the variation of habit 

from prismatic along p {110} to tabular parallel to c {001}. Both these forms showed 

striation in many of the crops prepared, but the crops used were composed of crystals 

exhibiting this property at a minimum, and several of the measured crystals were 

quite free from striation. The face in contact with the bottom of the crystallising 

vessel had been either p or c. 

* ‘Phil. Mag.’ 1835, [3], 6, 105; ‘ Pogg. Ann. der Phy., 1835, 36, 477. 
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Interfacial Angles of Ammonium Coppei’ Sulphate. 

Angle. 
No. of 

measure¬ 
ments. 

Limits. 
Mean 

observed. 
Calcu¬ 
lated. Diff. Values of 

Miller. 

far, =(100): (001) _ 
0/0/ o / 

73 51 
/ o / 

73 54 
as =(100):(101) — —- — 45 5 — — 

sc =(101): (001) — — _ 28 46 — — 
cr =(001): (201) 6 64 37- 64 42 64 38 64 33 5 1 64 54 
cs' = (001) : (101) — — — 38 51 — — 
s'r = (101): (201) — ■—- — 25 42 — — 
r'a = (201) : (100) — —• 41 36 — — 

[r'c =(201): (001) 3 115 17-115 23 115 22 115 27 5 — 

\ a/p =(100): (110) — — 35 38 ■— — 

pp’ = (HO): (120) 3 19 26- 19 26 19 26 19 28 2 — 
p'b = (120) : (010) 2 34 42- 35 1 34 52 34 54 2 — 
p'p" = (120) : (130) 1 9 53 9 58 5 — 
pf = (HO): (130) 1 — 29 24 29 26 2 — 
p'"b = (130) : (010) 1 — 24 58 24 56 2 .- 

• pb =(110):(010) 24 54 8- 54 37 54 22 * — -— 
[pp =(H0): (110) 19 71 4- 71 27 71 16 71 16 0 71 4 

fcq =(001): (Oil) 29 25 34- 26 16 25 57 * — 26 10 
1 [ qb =(011): (010) 29 63 40- 64 27 64 3 64 3 0 — 

fao =(100): (111) — — — 48 21 — — 
oq =(111): (Oil) 1 — 27 8 27 10 2 — 

\aq =(100):(Oil) — — 75 31 — — 
\qo =(011): (111) 1 34 59 34 54 5 — 
{o'a =(111): (100) — — — 69 35 — 69 11 

' co =(001): (111) 4 34 12- 34 32 34 26 34 24 2 
op =(111): (110 5 42 21- 42 29 42 27 42 32 5 •—- 

1 cp =(001): (110) 40 76 41- 77 12 76 56 * — ■ — 
\po =(110): (111) 1 — 57 52 57 59 7 — 
[o'c = (111): (001) 1 — 45 12 45 5 7 45 31 

'bn =(010): (121) — — — 54 21 — — 

J no = (121):(111) — — — 15 55 — — 
bo =(010): (111) 1 — 70 17 70 16 1 — 

js =(111):(101) — _ 19 44 — -—■ 

'bo = (010):(Ill) 1 64 57 64 57 0 — 
o’s = (Ill) : (101) — — -— 25 3 — — 

.o’o’ =(111): (III) — — — 50 6 — ■—• 

'sq =(101): (Oil) — — — 37 59 — — 

qp =(011):(110) 17 86 38- 87 23 87 4 87 2 2 ■—- 

1 ps = (110):(101) —- — ■—- 54 59 — — 
jpq =(110): (Oil) 16 92 40- 93 7 92 56 92 58 9 JU _ 

s'q = (101) : (Oil) — _ 45 33 — — 
qn =(011): (121) ■—- — — 26 26 — — 
np = (121):(110) — — — 36 18 — — 
qp =(011):(110) 21 62 32- 62 57 62 44 62 44 0 — 
ps' = (110) : (101) | — — — 71 43 -—• — 
M = (110):(Oil) 20 117 0-117 32 . 117 16 117 16 0 — 

j Vo' = (201) : (Ill) 1 — 35 12 35 16 4 — 
dp =(111): (110 ) 1 — 92 16 92 9 7 — 

.pr =(110): (201) 7 52 23- 52 42 52 31 52 35 4 — 

Total number of 
measurements . . 256 
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In the three following tables the morphological constants of the four salts containing 

copper are compared. The first shows that the axial angles of the ammonium and 

cfesium copper salts are almost identical, and that the axial ratios are such as place 

the ammonium salt indubitably in the same isomorphous series with the alkali-metal 

salts. 

Comparison of the Axial Angles and Axial Ratios. 

Axial angle. Axial ratios. 

Potassium copper sulphate . . 
Rubidium „ . ,, . . 
Ammonium „ . 
Caesium ,, ,, . . 

P- 
104° 28' 
105° 18' 
106° 9' 
106° 10' 

a : b: c 
0-7490:1:0-5088 
0-7490 : 1 : 0*5029 
0-7463 : 1 :0‘5066 
0-7429 : 1 -.0-4946 

Comparison of the Interfacial Angles. 

Angle. KCu sulphate. RbCu sulphate. CsCu sulphate. AmCu sulphate. 

Ac =(100): (001) 

o / 

75 32 

o r 

74 42 

o / 

73 50 

o / 

73 51 
as =(100):(101) 46 11 45 53 45 29 45 5 
sc =(101): (001) 29 21 28 49 28 -21 28 46 
cr =(001):(201) 63 19 63 30 63 50 64 33 
cs’ =(001): (101) 38 22 38 12 38 9 38 51 
s'r = (101) : (201) 24 57 25 18 25 41 25 42 
r’a = (201) : (100) 41 9 41 48 42 20 41 36 

fap =(100): (110) 35 59 35 52 35 30 35 38 
pp = (110):(120) 19 28 19 28 19 28 19 28 

' pb =(120): (010) 34 33 34 40 35 2 34 54 
PP " = (1^0) : (130) 9 54 9 55 9 59 9 58 
p'"b = (130) : (010) 24 39 24 45 25 3 24 56 

[pb =(110): (010) 54 1 54 8 54 30 54 22 

J rcq =(001): (Oil) 26 11 25 54 25 24 25 57 

i =(011): (010) 63 49 64 6 64 36 64 3 

fao =(100): (111) 49 28 49 5 48 36 48 21 
oq =(111):(Oil) 27 35 27 11 26 50 27 10 

-< aq =(100):(Oil) 77 3 76 16 75 26 75 31 
qo =(011):(Ill) 34 30 34 24 34 28 34 54 

(_ o'a =(111): (100) 68 27 69 20 70 6 69 35 

[co =(001): (111) 35 6 34 31 33 55 34 24 
op =(111): (110) 43 14 43 8 42 59 42 32 

-< cp =(001): (110) 78 20 77 39 76 54 76 56 
pd =(110):(111) 56 58 57 50 58 44 57 59 
o'c =(111): (001) 44 42 44 31 44 22 45 5 
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Comparison of the Interfacial Angles (continued). 

Angle. KCu sulphate. RbCu sulphate. CsCu sulphate. AmCu sulphate. 

fbo =(010) (111) 

o / 

69 50 

o / 

70 8 70 34 

o t 

70 16 
\os =(1H) :(101) 20 10 19 52 19 26 19 44 

j bo' = (010) (111) 65 3 65 8 65 22 64 57 
1 o's' = (Ill) (101) 24 57 24 52 24 38 25 3 

fsq = (101) (011) 38 32 37 59 37 21 37 59 
< qp = (oil) (110) 85 32 86 22 87 27 87 2 
ips = (HO) (101) 55 56 55 39 55 12 54 59 

fsq = (101) (Oil) 45 17 45 1 44 44 45 33 
Up =(0H) (110) 63 51 63 22 63 0 62 44 
lps' =(H0) (101) 70 52 71 37 72 16 71 43 

rto = (201) (111) 34 43 34 53 35 1 35 16 
< o'p = (111) (110) 92 49 92 17 91 59 92 9 
l pr =(110) (201) 52 28 52 50 53 0 52 35 

Of the 38 angles compared in the second table, 32 show a change of angle, on 

passing from the potassium salt to the ammonium salt, in the same direction as is 

observed when rubidium or caesium replaces potassium. Of these 32 cases, 27 show 

larger changes than for the rubidium replacement, and 10 even larger ones than for 

the caesium replacement. 

Double Sulphates containing Copper. 

Replacement. Average change. Maximum change. 

K by Rb .. 22 

/ / 

53 
K by Cs. 47 115 = 1 55 
K by NH4. 39 101 = 1 41 

The third small table shows that the average and maximum change of angle for the 

ammonium replacement is nearly as much as for the caesium replacement, both being 

twice as much approximately as for the replacement of potassium by rubidium. 

Cleavage.—The cleavage common to the series, parallel to 7y{201}, is developed, but 

is not very facile. There is quite a good cleavage parallel to b {010}, and in this salt this 

cleavage is undoubtedly the better one of the two. The fact was confirmed on several 

crystals of different crops, and excellent images of the signal were obtained from the 

cleaved surfaces, at exactly 90 degrees from c faces subsisting on the fragments 
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Volume. 

Relative Density.—Four determinations by the immersion method yielded the 

following values :— 

I. Density for 13°'8/4° . 1'9267 For 20°/4° . . . F9255 

II. „ 13°-3/4° . . . 1 ‘9268 „ 20°/4° . . . F9255 

III. „ 13°-6/4° . . . D9273 „ 20°/4° . . . 1-9261 

IV. 13°-6/4° . . . 1-9270 „ 20°/4° . . . F9258 

Mean . . . 1-9257 

Accepted value for 20°/4°, 1'926. This appears to be the first determination of the 

specific gravity of ammonium copper sulphate. 

Molecular Volume.— ^ = 206'08. 
a 1'926 

Molecular Distance Ratios (topic axial ratios).— 

x : -R : co = 61786 : 8‘2790 : 41942. 

Redeterminations of Densities of Alkali-metal Copper Sidphates. 

Potassium Copper Sidphate, KXu (S04)2.6H20. 

Tlie crystals for this determination were freshly prepared for the purpose, as this 

salt is the most difficult of all the potassium salts of the series to obtain in crystals 

free from turbidity and efflorescence. The crystals employed were almost perfectly 

clear, and were used immediately after removal from the mother liquor. 

I. Density for 14°-5/4° . . . 2-2336 For 20°/4° . . . 2-2324 

II. 5) 
15°-5/4° . . . 2-2335 „ 20°/4° . . . 2-2325 

III. 3 3 
15°-8/4° . . . 2-2329 „ 2074” . . . 2-2320 

IV. 33 
15°-9/4° . . . 2-2351 ,, 20°/4° . . . 2-2342 

Mean . . 2-2328 
Accepted value for 20°/4°, 2-233. 

Rubidium Copper Sulphate, Itb2Cu (S04)2.6H2Q. 

I. Density for 16°7/4° . . . 2-5761 For 2074o . . . 2-5753 

IT. 3? 
16° '8/4° . . . 2-5752 „ 2074o . . . 2-5744 

III. 3 3 
16°T/4° . . . 2-5751 „ 2074° . . . 2-5741 

IV. 33 
16°-2/4° . . . 2*5726 „ 2074o . . . 2-5716 

Mean . . 2-5739 

Accepted value for 20 /4°, 2'574 
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Caesium Copper Sulphate, Cs2Cu (S04)2. 6H20. 

I. Density for 19°'8/4° . 2-8605 For 20 /4 . . 2-8604 

II. „ 170,2/4° . . . 2-8570 „ 20°/4° . . . 2/8562 

III. „ 170,2/4° . . . 2-8591 „ 20°/4° . . . 2-8583 

IV. „ 17°'3/4° . . . 2-8586 „ 20°/4° . . . 2-8578 

Mean . . 2-8582 
Accepted value for 20°/4°, 2'8-58. 

The former pyknometer values for potassium, rubidium, and caesium copper sulphates 

were 2'224, 2'570, and 2‘854 respectively. There is every-reason for confidence that 

the new values now given are nearer the truth. 

The next table presents the whole of the volume constants of the four copper- 

containing salts in comparative form. It shows that the molecular volume of the 

ammonium salt is almost identical with that of the rubidium salt, and in this case 

very slightly lower. As regards topic axial ratios, the x and \fr values are slightly 

lower, and the w value somewhat higher, than the corresponding values for the 

rubidium salt. 

Volume Constants of the Copper Group. 

Salt. Molecular 
weight. 

Specific 
gravity. 

Molecular 
volume. 

Topic axial ratios. 

KCu sulphate . 438-76 2-233 196-49 
X 

6-0709 
\p : u) 

8-1053 : 4-1240 
RbCu 55 530-86 2-574 206-24 6-2017 8-2800 : 4-1640 
NH4Cu 55 396-92 1-926 206-08 6-1786 8-2790 : 4-1942 
CsCu 55 • 624-86 2-858 218-64 6-3332 8-5249 : 4-2164 

Optics. 

Orientation of the Optical Ellipsoid.—The plane of the optic axes is the symmetry 

plane b{010}, as usual throughout the series; but the double refraction is by 

exception of negative sign, the first median line corresponding to the refractive index 

and axis of indicatrix a, and the second median line to y. A pair of section-plates 

ground parallel to the symmetry plane 6{010} afforded the following extinction 

angles:—• 

Inclination of 1st M.L. from normal to c {001}. 

Plate 1 . . . 2° 26' Plate 2 ... 2° 50' 

Mean ... 2° 38'. 

The direction is (by exception in the series) in front of the normal, away from the 

axis c. Murmann and Rotter observed the same fact and found the angle from the 

normal 2° 33'. 
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As the axial angle ac = 73° 51', this direction, which is that of the first and not the 

second median line (the double refraction being 

negative), is 18° 47' from (in front of) the vertical 

axis c, and the other extinction in the symmetry 

plane is 2° 38' from (below) the axis a. The two 

mutually perpendicular extinction directions in the 

symmetry plane are thus not both in the obtuse 

angle of the morphological axes ac (as is the case in 

other groups than the copper group). The positions 

of the four optical ellipsoids of the copper group 

of salts are given in the next table, and expressed 

in fig. 10. 

Inclinations of a-Extinctions of the Copper Salt in front of Axis c. 

(lM.L. in Am salt and 2M.L. in other three salts). 

AmCu sulphate 18° 47' RbCu sulphate 2G° 28' 

KCu „ 18° 33' CsCu „ 42° 57'. 

In this case of the copper group the ellipsoid of the ammonium salt is almost 

identically situated with the potassium salt, whereas in other groups it has not been 

inclined so much as the potassium salt from the vertical position. The whole of the 

positions of the ellipsoid (as indicated by its a-axis) for the four copper salts are 

considerably further forward than in the other groups. 

Refractive Indices.—The next table gives the results of the refractive index 

determinations, carried out with six excellent 60°-prisms, each ground so as to afford 

two indices directly. 

Refractive Indices of Ammonium Copper Sulphate. 

Light. a. /5. 7- 

Li. 1-4878 1-4972 1-5020 
C. 1-4883 1-4977 1-5025 
Na. 1-4910 1-5007 1-5054 
T1. 1-4938 1-5035 1-5083 
Cd. 1-4954 1-5052 1-5099 
F. 1-4971 1-5067 1-5116 
C4. 1-5024 1-5121 1-5171 

Mean of a, /3, and y for Na light = 1 -4990. 

a = Vibration direction parallel to first median line, 18° 47' in front of axis c. 

fi = ,, „ ,, symmetry axis b. 

y = ,, ,, ,, second median line. 
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Murmann and Rotter obtained indirectly values for the /3 index varying from 

1‘494 for red light to 1'502 for blue light. 

General Formula for /3 (corrected to a vacuum):— 

o i-ioan 904 205 7 045 250 000 000 
O = i 4oUy + ---i-r .... 

X" X4 

The a indices are also reproduced by the formula if the constant 1‘4809 is 

diminished by 0'0096, and the y indices if it is increased by 0'0048. 

Observations at 70° indicated that for 55° rise of temperature the refractive indices 

are diminished by about 0'0027 for y, but only by 0'0005 for a, and by an inter¬ 

mediate amount for j3, the index approaching nearer to the midway position 

between the a and y indices. 

The refractive indices of the four salts containing copper are compared in the next 

table. 
Comparison of the Refractive Indices. 

Index. Light. KCu 
sulphate. 

EbCu 
sulphate. 

NH4Cu 
sulphate. 

CsCu 
sulphate. 

f Li. 1-4807 1 • 4858 1-4878 1-5017 
C. 1-4811 1-4862 1-4883 1-5021 

a j Na. 1-4836 1-4886 1-4910 1-5048 
T1. 1-4861 1-4912 1-4938 1-5074 

i 1 F. 1-4893 1-4943 1-4971 1-5108 

l G. 1-4944 1-4991 1-5024 1-5159 

f Li. 1-4834 1-4878 1-4972 1-5032 
C. 1-4838 1-4882 1-4977 1-5036 

13 
| 
Na. 1-4864 1-4906 1-5007 1-5061 
T1. 1-4889 1-4933 1-5035 1-5089 
F. 1-4922 1-4966 1-5067 1-5123 

l G. 1-4975 1-5013 1-5121 1-5174 

f Li. 1-4990' 1-5007 1-5020 1-5122 
C. 1-4994 1-5011 1-5025 1-5126 

i 
r • • • • <! 

i 
Na. 1-5020 1-5036 1-5054 1-5153 
T1. 1-5047 1-5064 1■5083 1•5180 

! F. 1-5081 1-5098 1-5116 1-5216 
i 
i G. 1-5134 1-5148 1-5171 1-5266 

Mean refractive index X (a + t3 + y) 1-4907 1-4943 1-4990 1-5087 
for Na light 

Double refraction, Nay_a .... 0-0184 0-0150 0-0144 0-0105 

It will be clear from this table that the refractive indices of ammonium copper 

sulphate are slightly higher than those of rubidium copper sulphate; the mean 

refractive index at the foot of the table shows this well. The double refraction is 

also only slightly different from (beyond) that of the rubidium salt, being slightly 

less, this property being a diminishing one while refractive index is an increasing- 

property as the alkali-metal series is ascended. 

tol. ccxvi.—a. o 
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Axial Ratios of the Optical Ellipsoid.—The calculated values of these ratios, both 

for the ammonium salt now described and for the analogous salts of the alkali metals 

previously studied, are collated comparatively in the next table. 

Axial Ratios of the Optical Indicatrix. 
oc : p 7 CC P 7 

KCu sulphate . 0T981 : 1 : 1-0105 0-9981 : 1 1-0105 

RbCu ,, . 0-9987 : 1 L0087 1 "0015 : 1-0028 L0116 

NH4Cu „ . 0-9936 : 1 1-0031 1-0031 L0096 1-0128 

CsCu „ . . 0-9991 : 1 1-0061 1-0124 1*0132 1-0194 

Axial Ratios of the Optical Velocity Ellipsoid. 

a : b c a I) r 

KCu sulphate . . L0019 : 1 0-9896 1 "0019 1 0-9896 

RbCu ,, . . . 1 "0013 : 1 0-9914 0-9985 0-9972 0-9886 

NH4Cu „ . . . 1-0065 : 1 0-9969 0-9969 0-9905 0-9874 

CsCu ,, . . L0009 : 1 0-9939 0-9878 0-9869 0-9809 

Here again, as regards the absolute dimensions of the optical ellipsoid along its 

three axial directions, as indicated by the right-hand series of ratios, the ammonium 

salt stands just beyond the rubidium salt. In the left-hand series, in which the /3 

axis of each salt is the reference dimension for that salt, the copper group shows its 

individuality in the fact that the ratios for the ammonium salt are the lowest or 

highest, instead of, as in the other groups, being intermediate between the values for 

the rubidium and caesium salts. 

Molecular Optical Constants.—These are set forth in the next three tables, for all 

four salts, the new values now given for the densities having been employed in 

recalculating the values for the three salts containing the alkali metals. 

The specific refraction and dispersion of the ammonium salt stand out prominently 

higher than those of the three alkali-metal salts. The molecular dispersion for the 

ammonium salt is not, in this group by exception, the highest, but stands below, yet 

nearest to, that for the caesium salt. 

Table of Specific Refraction and Dispersion (Lorenz). 

Sulphate. 

Specific refractio 
ri1 - 1 

Specific dispersion. 
nG - nc. 

{n* + 2)d 

For ray C (H “)• For ray Hy near G. 

CC. P- 7- CC. P- 7- CC. * P- 7- 

AmCu . 0-1497 0-1521 0-1534 0-1533 0-1558 0-1571 0-0036 0-0037 0-0037 
KCu.... 0-1275 0-1281 0-1316 0-1305 0-1312 0-1347 0-0030 0-0031 0-0031 
RbCu . . . 0-1116 0-1120 0-1145 0-1141 0-1145 0-1171 0-0025 0-0025 0-0026 
CsCu 0-1033 0-1035 0-1051 0-1057 0-1059 0-1075 0-0024 0-0024 0-0024 
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Table of Molecular Refraction and Dispersion (Lorenz). 

Salt. 

Molecular refractio 71s- 1 M 
- = in. 

Molecular dispersion, 
mG - mc. 

’ n2 + 2 ' 

For ray C (Ha). For ray Hy near G. 

cl. A 7- 
CL. A 7- 

GL. A 7- 

KCu sulphate 55 • 93 56-20 57-73 57-24 57 • 55 59-09 1-31 1-35 1-36 
RbCu ,, 59 • 23 59-44 60-77 60-57 60-79 62-17 1-34 1-35 1-40 
AmCu ,, 59-41 60-38 60-87 60-86 61-85 62 • 35 1-45 1-47 1-48 
CsCu „ 64-53 64-70 65-67 66-02 66-19 67-18 1-49 1-49 1-51 

Molecular Refraction (Gladstone and Dale). 

Salt. 

CL. 

'—j— M f°r ray C 

. A 7- 

Mean molecular 
refraction for ray C. 

r (« + /3 + y). 

KCu sulphate. 94-53 95 • 06 98-13 95-91 
EbCu ,, . 100-27 100-69 103-35 101-44 
AmCu ,, ..... 100-63 102-57 103-56 102-25 
CsCu „ . 109-78 110-11 112-07 110-65 

As regards the important property of molecular refraction the copper group shows 

the same relation as the other groups, namely, that the values for the ammonium 

salt are slightly higher than those for the rubidium salt, as is well expressed in the 

last column of the third table by the mean molecular refraction. 

Optic Axial Angle.—Three pairs of section plates, parallel to the first and second 

median lines, afforded the following results :— 

Apparent Optic Axial Angle in Air, 2E, of AmCu Sulphate. 

Light. Plate 1. Plate 2. Plate 3. Mean 2E. 

Li ... . 116 41 

o / 

115 45 

o / 

116 20 

o / 

116 15 
C. 116 20 115 27 116 0 115 56 
Na. . . 115 18 113 43 114 46 . 114 36 
T1 . . . 114 19 112 50 113 40 113 36 
Cd. 113 32 112 0 113 9 112 54 
F. 113 12 111 30 112 45 112 29 

G 2 
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A determination with Plate 3 at temperatures up to 65° indicated that 2E increases 

rapidly on rise of temperature, a fact which accords with the alteration of the 

refractive indices by rise of temperature. 

For Na light the angle at the ordinary temperature, 15°, was 114° 46', at 40° it 

had increased to 131 15', at 45° to 136°, at 50° to 138°, at 55° to 143°, and at 65° to 

158° 20'. The angle thus increases by 44° for 50° rise of temperature. 

Determination of True Optic Axial Angle in Bromonaphthalene. 

of plate 
1 M.L. 

Observed 
2H„. 

No. of plate 
perp. 2 M.L. 

Observed 
2H0. 

Calculal 
2Va. 

1 

o / 

61 56 la 

O 1 

96 31 

o / 

69 11 
2 61 25 2a 96 30 68 47 
3 61 45 3a 96 25 69 5 

1 61 52 la 96 30 69 8 
2 61 23 2 a 96 30 68 46 
3 61 35 3 a 96 25 68 57 

1 61 3 lco 96 26 68 32 
2 60 50 2 a 96 30 68 20 
3 60 50 3 a 96 25 68 22 

1 60 4 la 96 21 67 46 
2 59 58 2ft 96 30 67 38 
3 59 52 3 a 96 25 67 35 

1 59 42 la 96 18 67 30 
2 59 18 2a 96 30 67 6 
3 59 24 3 a 96 25 67 13 

1 59 18 la 96 14 67 12 
2 58 45 2a . 96 30 66 39 
3 59 0 *&Ll 96 25 66 53 

Light. 

Li 

C 

Na 

T1 

Cd 

F 

Mean 
2 Ya. 

69 1 

68 57 

68 31 

67 40 

67 16 

66 55 

Section la showed clear although minute dispersion, but Sections 2« and 3a 

showed no trace of dispersion, the brushes in white light being sharply black without 

trace of coloured borders. 

Murmann and Potter found by indirect observation 121° 39' for 2E, and 71° 21' 

for 2V„. 

Dispersion of the Median Lines.—-The inclined dispersion is very minute. 

Measurements in toluene indicated that the first median line lies nearer to the 

axis c for red Li light by 7' (mean of 4', 10', and 6') than for greenish-blue 

F light. 

In the next table the optic axial angles of the four copper salts are compared. 

The ammonium salt is seen to display an essential difference from the alkali-metal 

salts as regards optic axial angle. 
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Optic Axial Angles 2Va of the Copper Group. 

AmCu sulphate. KCu sulphate. RbCu sulphate. CsCu sulphate. 

Li. 60 1 

o / 

46 1 

o / 

44 26 

o / 

43 6 
C. 68 57 46 6 44 29 43 9 
Na ..... . 68 31 46 32 44 42 43 24 
T1. 67 40 47 0 44 57 43 40 
F. 66 55 47 33 45 15 44 3 

Ammonium Cadmium Sulphate, (NH4)2 Cd (S04)2.6ILO. 

This salt is not included in the investigations of Murmann and Hotter, but a few 

measurements of the crystals are given by Rammelsberg,* and these values are 

appended in the last column of the table of angles given on next page. All the forms 

given in the list of “ forms observed ” below were also observed by Rammelsberg. 

Crystal System.—Monoclinic. Class No. 5, holohedral-prismatic. 

Ratios of Axes.— 

a :b : c = 07364 : 1 : 0‘4931. Values of Rammelsberg, 07431 : 1 : 0‘4945. 

Axial Angle.—(3 = 106° 41'. Value of Rammelsberg, 107° 23'. 

Forms observed.—a{l00}, 6 {010}, c {001}, p {110}, p'{l20], jpw{l30}, q {Oil}, 

r'{20l}, o {111}, (/{Ill}. 

Habit.—Prismatic parallel to the axis c, sometimes fairly long as in fig. 11, but 

more frequently short and almost tabular parallel to c {001} as in fig. 12. 

* 

The crystals of this salt are exceptionally rich in faces, practically all the ten 

crystals measured exhibiting all the forms enumerated in the above list. They are less 

transparent than those of the other salts, being a translucent white. For this reason 

their optical investigation has presented considerable difficulty, and for the purpose of 

* ‘ Handb. der Ivrystall.-phys. Chemie,’ Leipzig, 1881, 1, 460. 
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Interfacial Angles of Ammonium Cadmium Sulphate. 

Angle. 
No. of 

measure¬ 
ments. 

Limits. 
Mean 

observed. 
Calcu¬ 
lated. 

Diff. 
Values of 
Rammels- 

BERG. 

ac = (100):(001) 16 
/ 

73 5- 73 28 73 16 73 19 
/ 
3 

o / 
72 37 

as =(100):(101) — — — 45 5 -— — 
sc = (101): (001) — — 28 14 -— — 

J 
1 cr =(001):(201) 18 64 8- 64 29 64 22 64 18 4 64 50 

cs =(001): (101) — — 38 23 — 1 
sr = (101):(201) — — -- 25 55 — — 
ra = (201): (100) 15 42 11- 42 25 42 19 42 23 4 — 

' ap = (100) : (110) 21 35 3- 35 24 35 13 35 14 1 — 
PP =(110):(120) 21 19 10- 19 37 19 24 19 28 4 19 28 
pb = (120): (010) 21 35 9- 35 34 35 23 35 IS 5 — 
pY' = (120): (130) 13 9 52- 10 17 10 5 10 2 3 

1 PP"’ = (110): (130) 16 29 16- 29 46 29 29 29 30 1 29 30 
p'"b = (130) : (010) 18 25 7- 25 27 25 17 25 16 1 •—- 
pb = (110):(010) 26 54 36- 54 57 54 46 * — — 

[PP =(110): (110) 17 70 18- 70 37 70 26 70 28 2 70 36 

Jcq =(001): (Oil) 32 25 4- 25 26 25 17 25 17 0 25 11 
\qb =(011): (010) 31 64 32- 64 54 64 43 * — 

\ao =(100): (111) 14 48 1-48 25 48 10 48 12 2 — 

| oq = (111):(Oil) 19 26 33- 27 .1 26 47 26 45 2 
\aq =(100): (Oil) 23 74 36- 75 11 74 55 74 57 2 74 45 

1 go' =(011): (111) 24 34 36- 34 57 34 47 34 43 4 34 35 
[da = (Ill): (100) 21 70 0- 70 28 70 16 70 20 4 — 

[co = (001): (111) 27 33 25- 33 56 33 42 33 43 1 33 30 
1 op = (111): (110) 25 42 30- 42 58 42 44 42 43 1 — 
\cp =(001): (110) 35 76 18- 76 43 76 26 * — 

1 F =(110):(111) 32 58 40- 59 5 58 53 59 0 7 59 39 
[o'c =(111): (001) 33 44 25- 44 57 44 41 44 34 7 44 42 

[bn =(010): (121) — — 55 4 — — 

| no =(121):(111) — 15 41 — — 
bo =(010):(111) 19 70 31- 70 55 70 46 70 45 1 
os =(111): (101) —- ■—■ 19 15 — — 

(_ oo = (111): (111) 8 38 14- 38 38 38 28 38 30 2 — 

f bo = (010) : (Ill-) 29 65 11- 65 30 65 24 65 23 1 — 

< o's' =(111): (101) — — ■ — 24 37 — — 
lo'd = (Ill): (III) 13 49 0- 49 20 49 12 49 14 2 — 

fsq =(101):(Oil) — — 37 11 — _ 

L qp =(011):(110) 28 87 54- 88 8 88 2 88 2 0 — 
< ps =(110):(101) _ — — 54 47 —- — 
l m = (HO) : (Oil) 26 91 50- 92 7 91 58 91 58 0 — 

[s’q = (101): (Oil) — — — 44 52 — — 

qn =(011):(121) — — — 26 9 — — 

np = (121):(110) -— — 36 34 — 
qp =(011):(110) 31 62 31- 62 59 62 42 62 43 1 
ps =(110):(101) — — — 72 25 — — 

LPi =(H0): (Oil) 30 117 4-117 30 117 17 117 17 0 —■ 

fr'o' = (201) : (Ill) 30 34 45- 35 24 35 6 35 9 3 — 

< dp =(111):(110) 28 91 52- 92 17 92 3 91 58 5 — 

IF' =(110): (201) 30 52 37- 52 58 52 49 52 53 4 — 

Total number of 
measurements. . 790 

' 
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density determinations the crystals have had to be freshly prepared and used very 

soon after removal from the mother liquor. Their goniometrical measurement, 

however, has offered no difficulty. 

The relative development of the faces is frequently so different from the main types 

illustrated in figs. 11 and 12, that it is not always easy to recognise the various faces 

immediately. The ten small crystals measured were selected from the two best crops 

of a very large number prepared. They afforded very satisfactory goniometrical 

results (see accompanying table of angles) in all cases but those involving the faces of 

(/{ill} in the zone [_cpo,~\ ; for when this zone was adjusted these faces invariably 

showed multiple images of the signal, due to more or less striation, so that the mean 

measured values of the angles po' and o'c differed rather more than usual from the 

calculated values. 

The rarer forms common to this monoclinic series of double salts are exceptionally 

well developed on the crystals of cadmium ammonium sulphate ; for instance, the 

faces of a {100}, o {ill}, p'{l20}, and j»3///{ 130} have been frequently observed quite 

large. Moreover, single faces of the commoner forms b {010} and r'{20l} are 

occasionally found phenomenally developed; thus several crystals were found 

roughly hemispherical, the large flat base being a particularly large and perfectly 

plane b-face, while others were found with a similarly predominatingly developed 

A-face. 

The morphological constants of the three cadmium-containing salts are compared in 

the next two tables. As already explained, potassium cadmium sulphate with 6H20 

has so far resisted all attempts at preparation. The first table shows that the axial 

ratios of the ammonium cadmium salt are very close to those of the rubidium cadmium 

salt. The axial angle ft of the ammonium salt is not far removed from that of the 

caesium salt, but is not so close as in all the other groups investigated. The morpho¬ 

logical angles of the ammonium salt are shown in the second table to be related to 

those of the rubidium and caesium salts in a very similar manner to what has been 

shown to occur in the other groups, for which it has been possible to effect a complete 

comparison and to determine the differences in angle of all three salts from the 

potassium salt. They indicate conclusively that the ammonium salt belongs to the 

same isomorphous series as the rubidium and caesium salts containing cadmium. 

Comparison of the Axial Angles and Axial Ratios. 

Axial angle. Axial ratios. 

Rubidium cadmium sulphate . 
Ammonium „ ,, 
Csesium ,, ,, 

ft. 
105° 53' 
106° 41' 
107° 11' 

a : b : - c 
0-7346 : 1 : 0-4931 
0-7364: 1 : 0‘4931 
0-7259 : 1 : 0-4906 
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Comparison of the Interfacial Angles. 

Angle. ItbCd sulphate. CsCd sulphate. AmCd sulphate. 

' ac = (100):(001) 

o / 

74 7 72 49 

o / 

73 19 
as = (100) : (101) 45 29 44 31 45 5 
sc = (101) : (001) 28 38 28 18 28 14 

<{ cr' = (001) : (201) 63 56 65 5 64 18 
cs' = (001) : (101) 38 22 38 54 38 23 
sV = (101) :(201) 25 34 26 11 25 55 
r’a = (201) : (100) 41 57 42 6 42 23 

rap = (100) :(110) 35 14 34 44 35 14 

J pp' = (110):(120) 19 28 19 28 19 28 

i pb = (120) : (010) 35 18 35 48 35 18 
gpb = (110) : (010) 54 46 55 16 54 46 

fcq =(001): (Oil) 25 24 25 8 25 17 
\qb = (Oil) : (010) 64 36 64 52 64 43 

rao = (100) : (111) 48 35 47 37 48 12 
oq = (111): (011) 27 6 26 52 26 45 
aq = (100) : (Oil) 75 41 74 29 74 57 
qo' = (011) : (Ill) 34 41 35 11 34 43 

fo'a = (111) : (100) 69 38 70 20 70 20 

f co = (001) : (111) 34 6 33 38 33 43 
op = (111) : (110) 42 59 42 19 42 43 

-< cp = (001) : (110) 77 5 75 57 76 26 
po = (110) : (111) 58 26 59 8 59 0 

[o'c = (111) : (001) 44 29 44 55 44 34 

f bo = (010) : (111) 70 38 71 1 70 45 
Ios = (111) : (101) 19 22 18 59 19 15 

f bo' = (010) : (Ill) 65 30 65 30 65 23 
\ o's' = (Ill) : (101) 24 30 24 30 24 37 

Csq =(101): (Oil) 37 33 37 9 37 11 
< qp = (011) : (110) 87 23 88 43 88 2 
lps = (110) : (101) 55 4 54 8 54 47 

[s'q = (101) : (011) 44 54 45 12 44 52 
{ W = (OH) = (HO) 63 18 62 30 62 43 
lps’ = (110) : (101) 71 48 72 18 72 25 

fr'o' = (201) : (Ill) 34 50 35 15 35 9 
op =(1H): (110) 92 35 92 19 91 58 

lpr = (110) : (201) 52 35 52 26 52 53 
• 

Cleavage.—A fairly good cleavage parallel to r' {201} is developed in the 

crystals of ammonium cadmium sulphate. No trace of cleavage parallel to b {010} 

was discovered. 
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Volume. 

Relative Density.—Four determinations by the immersion method gave the following 

esults 

I. Density for 13°'6/4° . 2'0613 For 2074° . . . 2-0600 

II. „ 14°'2/4° . . . 2-0620 „ 2074o . . . 2'0608 

III. „ 13°-9/4° . . . 2-0623 „ 2074o . . . 2-0610 

IV. „ 13°'5/4° . . . 2-0631 „ 2074“ . . . 2-0618 

Accepted value for 20°/4°, 2'061. 

Mean . . 2-0609 

Molecular Volume.— = ^"*.4 - = 216‘12. 
d 2-061 

Molecular Distance Ratios {topic axial ratios).— 

x : f : w = 6-2838 : 8-5332 : 4-2078. 

Redeterminations of Densities of Rubidium and Ccesium Cadmium Sulph ates. 

Rubidium Cadmium Sulphate, Rb2 Cd (S04)2.6H20. 

1. Density for 15°"6/4° . . . 2-6963 For 2074o . . . 2-6951 

II. 15°-8/4° . . . 2-6976 „ 2074° . . . . 2-6965 

HI. 15°'3/4° . . . . 2-6984 „ 2074o . . . . 2-6972 

IV. 15°-0/4° . . , . 2"6942 „ 2074° . . . 2-6928 

v. 16°-0/4° . . . 2-6946 „ 2074° . . . . 2-6935 

Mean . . . 2"6950 

Accepted value for 20°/4°, 2'695. 

Ccesium Cadmium Sulphate, Cs2 Cd (S04)2. 6H20. 

I. Density for 14°"8/4° . . 2'95 82 For 2074° . . . 2'9568 

II. „ 15°-6/4° . . . 2-9572 „ 2074o . . . 2-9560 

III. „ 14°'8/4° . . . 2'9567 „ 2074° . . 2"9553 

IV. „ 14°-7/4° . . . 2-9593 „ 2074o • • . 2-9578 

Mean . . 2'9565 

Accepted value for 20°/4°, 2'957. 

The former values for the pyknometer method were 2'672 for the rubidium salt, 

and 2'955 for the caesium salt. 

As was fully described in the communication describing the work on rubidium 

cadmium sulphate,* special difficulties were found in carrying out density determina- 

* ‘ Journ. Chem. Soc., Trans.,’ 1896, 69, 445. 

VOL. COXVI.—A. H 
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tions of this salt by the pyknometer method, owing to rapid efflorescence, which was 

greatly accelerated by powdering and necessitated rapid working and weighing while 

covered with carbon tetrachloride, the pyknometer liquid. The immersion method is 

free from the powdering difficulty, and it is only necessary to use freshly grown 

crystals, and to preserve them under benzene until the moment of dropping them 

into the immersion liquid mixture of methylene iodide and benzene. This was done 

in the cases of the five determinations now recorded, and the result, 2‘695, is much 

higher than the former pyknometer one, and can be accepted with confidence. 

Volume Constants of the Cadmium Group. 

o i, I Molecular1 
weight. 

Specific 
gravity. 

Molecular 
volume. 

Topic axial ratios. 

RbCd sulphate . 579-36 2-695 214-98 
X : I ■ w 

6-2539 : 8'5133 : 4'1980 
NIRCd 445-42 2-061 216-12 6-2838 : 8-5332 : 4'2078 
CsCd 673-36 2 • 957 227-72 6-3497 : 8-7472 : 4'2914 

The comparative table of the volume constants shows that the ammonium cadmium 

salt occupies a position just beyond that of the rubidium cadmium salt, the molecular 

volume and all three topic axial ratios being slightly higher. 

Optics. 

No optical investigation of this salt appears to have been hitherto undertaken. It 

is a matter of some difficulty, as ground surfaces of the crystals effloresce with great 

rapidity; also the use of warm wax on the crystal holder for cementing purposes is 

precluded, as rise of temperature provokes instant opacity from loss of water of 

crystallisation. By careful rapid work, however, the use of a special wax, and 

immediately covering ground surfaces with very thin truly plane glass plates cemented 

by hard balsam in benzene, all these difficulties were eventually overcome. 

Orientation of Optical Ellipsoid- -The optic axes lie in the symmetry plane b {010} 

and the sign of the double refraction is positive. The first median line corresponds to 

the axis y of the optical indicatrix and the second median line to a. 

A pair of section-plates parallel to the symmetry plane afforded the extinction 

angles:—- 

Inclination q/2M.L. from normal to c {001}. 

Plate 1 ... 5° 8' Plate 2 ... 5° 20' 

Mean . . . 5° 14'. 
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O' 

The direction is behind the normal. As the axial angle ac — 73C 19' this 

extinction direction, the second median line, is 11° 27' from and in front of the 

vertical axis c ; and the other extinction in the symmetry plane, the first median 

line, is 5° 14' from and above the axis a, both median 

lines thus lying in the obtuse angle of the morphological 

axes ac. 

The positions of the optical indicatrix for the three 

cadmium salts are compared in the next table, and 

illustrated in fig. 13. 

Inclinations of a-Axis of the Indicatrix (2M.L.) of the 

Cadmium Salts in front of Axis c. 

AmCd sulphate 11 27' 

RbCd „ 15° 53' 

CsCd „ 26° 56' 

The order of these positions of the indicatrix for the three salts is similar to what 

has been observed in the other groups, in which the potassium salt also has been able 

to be compared. 

Refractive Indices.—Determinations with six prisms, each ground to yield two 

indices directly, gave the results summarised in the accompanying table. 

Refractive Indices of Ammonium Cadmium Sulphate. 

Light. a. A 7- 

Li. 1-4816 1-4855 1-4927 
C. 1-4821 1-4860 1-4932 
Na. 1-4847 1-4887 1-4959 
T1. 1-4875 1-4915 1-4987 
Cel. 1 4891 1-4931 1-5003 
F 1•4907 1-4947 « 1-5019 
G. 1-4961 1-5001 1-5073 

Mean of a, [3, and y for Na light = 1 • 4898. 

a. = Vibration-direction parallel to second median line, 11° 27' in front of axis c. 

[3 = „ „ „ „ symmetry axis b. 

y = „ ,, ,, ,, first median line. 

General formula for (3, corrected to a vacuum :—- 

« , 605 763 2 351 170 000 000, 
p = 1 4736+——-^-+... . 

The a indices are equally well reproduced by the formula if the constant I’4736 is 

diminished by 0'0040, and the y indices if it is increased by 0’0072. 

H 2 



52 DR. A. E. H. TUTTON ON THE 

Observations at higher temperatures were precluded on account of decomposition 

and opacity due to loss of water of crystallisation. 

In the next table the refractive indices of the three cadmium-containing salts are 

compared. 

Comparison of the Refractive Indices. 

Index. Light. RbCd sulphate. NH4Cd sulphate. CsCd sulphate. 

r Li. 1-4773 1-4816 1-4947 
C. 1-4777 1-4821 1-4951 
Na. 1-4798 1-4847 1-4975 

a . . . 
T1. 1-4823 1■4875 1-5000 
F. 1•4856 1-4907 1-5033 
G. 1-4906 1-4961 1-5081 

r Li. 1-4820 1•4855 1-4972 
C. 1-4824 1-4860 1-4976 

R J Na. 1-4848 1-4887 1-5000 
/*•••• i T1. 1-4872 1-4915 1-5026 

F. 1-4905 1-4947 1-5058 

i G. 1-4955 1-5001 1-5106 

f Li.'. 1-4919 1-4927 1-5034 
C. 1-4923 1-4932 1-5038 
Na . ■ . . . . 1-4948 1-4959 1-5062 

7 • • • • 1 T1. 1-4972 1-4987 1•5088 
F. 1-5097 1-5019 1-5123 

i G. 1-5061 1-5073 1-5172 

Mean refractive index ^(ot + fS + y) 1-4865 1-4898 1-5012 
for Na light 

Double refraction, Nav_„ .... 0-0150 0-0112 0-0087 

The refractive indices of the ammonium cadmium salt are just slightly higher than 

those of the rubidium cadmium salt, the relationship being best expressed by the mean 

index given at the foot of the table. The double refraction of the ammonium salt is 

also intermediate between the values for the rubidium and caesium salts, but in this 

case nearer to the caesium salt. 

Axial Ratios of the Optical Ellipsoid.—The values of these ratios are compared in 

the next table. The potassium salt not being available for comparison, only the ratios 

on the basis of the /3 value of each salt = 1 are possible. 

RbCd sulphate 

NH4Cd „ • 

CsCd 

Axial Ratios of 

Optical Indicatrix 

a : 0 : y 

0T966 : I : 1‘0067 

0-9973 : 1 : R0048 

0'9983 : 1 : R0041 

Optical Velocity Ellipsoid, 

a : t> : c 

D0034 : 1 : 0‘9933 

R0027 : 1 : 0'9952 

R0017 : 1 : 0'9959 
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The values for the ammonium salt are intermediate between those for the 

rubidium and caesium salts. 

Molecular Optical Constants.—The next three, tables set forth these constants for 

all three salts of the cadmium group in comparative form. In recalculating the 

values for the rubidium and caesium salts the new values for the densities now 

determined by the immersion method were employed. From the tables it may be 

deduced that the specific refraction and dispersion of the ammonium salt stand out 

prominently higher than those of the rubidium and caesium salts ; the molecular 

dispersion of the ammonium salt also slightly exceeds that of caesium cadmium 

sulphate. As regards the most important molecular refraction, all the values for the 

ammonium salt, including the mean molecular refraction, are just slightly higher than 

the corresponding values for the rubidium salt. It is immaterial whether the formula 

of Lorenz or that of Gladstone and Dale is employed. 

Table of Specific Refraction and Dispersion (Lorenz). 

. 
■ 

Sulphate. 

Ifl 2 _ 2 
Specific refraction, —--- = n. 

(n2 + 2) d 
Specific dispersion. 

»G - »C- 

For ray C (Ha)- For ray H7 near G. 

cl. ft. 7- cl. ft- 7- cl. ft. 7- 

AmCd . 
RbCcl . . . 
CsCd . . . 

0-1383 
0-1050 
0-0986 

0-1393 
0-1058 
0-0991 

0-1411 
0-1077 
0-1001 

0-1418 
0-1074 
0-1008 

0-1427 
0-1083 
0-1012 

0-1445 
0-1103 
0-1023 

0■0035 
0-0024 
0-0022 

0•0034 
0-0025 
0-0021 

0•0034 
0-0026 
0-0022 

Table of Molecular Refraction and Dispersion (Lorenz). 

Salt. 

Molecular refraction 
re2- 1 . M 

1 = m- 
Molecular dispersion. 

mG - mc. 

•re2+ 2 

For ray C (Ha). For ray Ily near G. 

CC. ft. 7- CL. 
ft. 7- CL. ft. 7- 

RbCd sulphate 60-82 61-32 62-40 62 • 22 62-75 63-88 1-40 1-43 1-48 
AmCd ,, 61-62 62-05 62-83 63-14 63-57 64-35- 1 • 52 1-52 1-52 
CsCd 66-42 66-70 67-41 67-89 68-17 68-92 1-47 1-47 1-51 
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Molecular Refraction (Gladstone and Dale). 

Salt. 
>-—j— M for ray C. Mean molecular 

refraction for ray C. 
'(a + jS + y). 

CL. A 7- 

RbCd sulphate. 
AmCd „ . 
CsCd „ . 

102-70 
104-19 
112-74 

103-71 
105-03 
113-31 

105- 83 
106- 59 
114-73 

104- 08 
105- 27 
113-59 

Optic Axial Angle.—Three pairs of section-plates perpendicular to the two median 

lines were, after much trouble, obtained by grinding, which were adequately 

transparent to enable a complete series of measurements to be obtained of 2Ha and 

2Ho in bromonapbthalene, and the measurement in two cases of 2E for the most 

brilliant sodium light wave-length. Observations of the dispersion of the median 

lines between Li and F light were also successfully carried out. The results are 

shown in the next two tables. 

Apparent Optic Axial Angle in Air, 2E, of AmCd Sulphate for Sodium Light. 

Plate 1 . . . 124° 33' Plate 2 . . . 124° 31' 

Mean 2E . . . 124° 32' 

Determination of True Optic Axial Angle in Bromonaphthalene. 

No. of plate 
perp. 1 M.L. 

Observed 
2H(„ 

No. of plate 
perp. 2 M.L. 

Observed 
2H0. 

Calculated 
2Va. 

Mean 
2Y„. 

1 

o / 

64 29 la 

o / 

92 48 

o / 

72 46" 

o / 

2 64 27 2a 92 57 72 40 72 45 
3 64 32 3 a 92 44 72 50, 1 

1 64 28 la 92 43 72 477 
2 64 25 2a 92 53 72 41 72 46 
3 64 30 3a 92 38 72 51 J 1 
1 64 16 la 92 18 72 507 
2 64 11 2a 92 20 72 45 72 51 
3 64 16 3a 91 58 72 58J 

1 64 0 la 91 43 72 537 
2 63 57 2a 91 46 72 50 72 56 
3 64 2 3 a 91 22 73 4 J 
1 63 48 la 91 22 72 547 
2 63 50 2 a 91 23 72 54 > 72 58 
3 63 54 3a 91 4 73 7 J 

1 63 35 la 90 58 72 567 
2 63 40 2 a 91 3 72 57 > 73 1 
3 63 44 3 a 90 40 73 10J 
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Dispersion of the Median Lines.—The inclined dispersion is very minute. From 

observations in toluene with sections 1 and 2 it was ascertained that the first median 

line lies 8' nearer to the axis a for Li red light than for greenish-blue F light. 

In the next table the optic axial angles of the three cadmium salts are compared. 

Optic Axial Angles 2Va of the Cadmium Group. 

AmCd sulphate. RbCd sulphate. CsCd sulphate. 

Li. 

o / 

72 45 72 20 

o / 

68 4 
C. 72 46 72 21 68 2 
Na. 72 51 72 26 67 53 
Ti ...... . 72 56 72 31 67 44 
F. 73 1 72 37 67 28 

It will be observed that the optic axial angle of the ammonium cadmium salt is 

only very slightly larger than that of the rubidium cadmium salt. 

Summary of Conclusions. 

The results of this investigation of the five remaining ammonium salts of the double 

sulphate series are perfectly in line with and fully confirm those already derived, in 

two former communications, from a study of three other ammonium salts of the series. 

The chief conclusion is that the close similarity of the crystal angles, the axial ratios, 

the volume constants, and the optical constants of these ammonium salts clearly 

entitles them to places in the monoclinic isomorphous series iLM(S04)2. 6FLO, It 

being represented by the NH4 radicle; but that they are not so definitely related, 

“ eutropic ” as it has been termed, as are those salts of the series in which II is 

potassium, rubidium, or caesium. Now interchange of these Pi,-metals has been shown 

to exert a comparatively great and dominating effect on the properties of the crystals, 

progressively with their atomic weights, while change of the M-metal only produces 

slight change. But this law of progression of the crystallographic properties, both 

morphological and physical, with the atomic weight of the alkali metal It, which 

law is the essence of “ eutropism,” cannot apply as regards ammonium ; for we 

are here dealing with a radicle group of elements, NH4, and not with three simple 

interchangeable elements of the same family group of Mendeleeef’s table, 

definitely progressive in atomic weight and in all the properties which accompany 

atomic weight. Yet the group NH4 possesses the singular power of chemically 

replacing these alkali metals in their salts, as also does the metal thallium, which 

is well known to be of a different nature to the three alkali metals potassium, 

rubidium, and csesium. It has now been shown that the replacement occurs in these 
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two non-eutropic cases with surprisingly slight alteration of the morphology of the 

crystals, the change, in fact, being almost nil when rubidium is the alkali metal 

replaced by either ammonium or thallium. While no clear rule like that of eutropic 

progression can apply as regards ammonium (or thallium), there are still very definite 

relationships which have been established as the result of the research now completed, 

which can best be stated separately for the various properties. 

Crystal Angles.—-The monoclinic axial angle (3 of the ammonium salt of any group 

(set of salts containing the same M-metal) is usually very close to that of the caesium 

salt of the same group. In six of the eight groups, those in which all four salts (of 

NH.(, K, fib, and Cs) are capable of existence, the difference is less than 10', and in three 

cases it does not exceed 2'. The change in this important angle when K is replaced 

by Rb is usually about a degree, and when Cs replaces K about 2 degrees, the latter 

being almost exactly twice the former, the angular changes corresponding to the two 

changes in atomic weight, 46 and 93. The maximum change's observed for the two 

replacements were T 12' and 2° 20', in the iron group, the NH4 replacement in this 

group causing 2° 18' of change. 

In all the six complete groups 32 to 34 out of 36 different interfacial angles 

compared (all in which the differences are beyond the range of experimental error) 

show a change of angle on replacing K by NH4 in the same direction as if Rb or 

Cs were introduced instead. The average and maximum amounts of the change when 

NH4 replaces K are approximately the same as when K is replaced by Cs, and this 

amount is twice as great as when Rb replaces K ; for the average and maximum 

changes of angles are directly proportional to the change of atomic weight when one 

alkali metal is substituted for another. (K = 38'85’ when H = 1, Rb = 84’9, and 

Cs = 131’9, and ,JS 85 + TR 9 _ . ajg0 pq, —K — and Cs —Rb = 47.) The 

maximum change of angle observed for the replacement of K by Cs occurs in the 

magnesium group, and is 2° 25'; the replacement of K by NTI4 in the same group 

provokes a change of nearly the same amount, 2° 18', while the change for the 

replacement of K by Rb is exactly half the value for the Cs replacement, namely, 

1° 12'. This direct proportionality of the average and maximum change of angle to 

the change in atomic weight of the alkali metal is one of the most striking and 

important of all the’ facts brought to light by this prolonged investigation, and is 

rendered the more important by the large amounts of these changes. It is also 

interesting to note 'that the change (strictly proportional to that in atomic weight) 

in the most important of the angles, the axial angle (3, between the primary 

orthopinakoid a {100} and basal plane c {001}, is so large as to be nearly equal to the 

maximum, and in several groups this angle is actually itself the angle of maximum 

change. These conclusions are, therefore, far away from any possible experimental 

error, which at the highest estimate could not exceed 5' and probably does not 

exceed 3'. 
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Axial Ratios.—The ratios of the morphological axes of any ammonium salt of the 

series are very close to those of the alkali-metal salts of the same group, and usually 

lie within the limits of the latter. 'They thus afford very strong evidence of the 

isomorphism of the ammonium salts with the alkali-metal salts of the group and 

series. 

Cleavage.—The crystals of the whole series of salts show cleavage parallel to the 

orthopinakoid r'{20l}. Four of the ammonium salts, those of the Mg, Ni, Mn, and 

Cu groups, show in addition a good cleavage parallel to the symmetry plane b {010}, 

and in ammonium copper sulphate this cleavage is the more perfect of the two. The 

introduction of the NH4 radicle in place of an alkali metal thus appears to affect 

the cleavage. A similar effect was observed in the simple rhombic sulphates 

of ammonium and the alkali metals ; but in this case it took the form of the 

suppression in ammonium sulphate of one (b {010}, the more perfect cleavage) of 

the two cleavages (parallel to 6 {010} and c {001}) common to the sulphates of 

K, Rb, and Cs. 

Density and Molecular Volume.—The density of the ammonium salt is the lowest 

in every group. The molecular volume of the ammonium salt, however, is nearly 

identical with that of the rubidium salt of the same group; on the average it is just 

slightly higher, the differences varying from 1‘6 above to 0T6 below the value for the 

rubidium salt. The average difference of molecular volume, for the whole of the 

double sulphate series, between a K and a Rb salt is 9'55 units, between a K and a 

NH4 salt 10"41 units, and between a K and a Cs salt 22'23 units. The change of 

molecular volume with change of the alkali metal thus follows the order of the atomic 

weights of the alkali metals, and the absolute amounts are a higher function of the 

atomic weight than direct proportionality. The two following tables will render 

these facts clear. 

Relative Densities Compared. 

M 
metal. 

Density 
of 

K salt. 

Difference 
between 

K and Rb 
salts. 

Density 
of 

Rb salt. 

Difference 
between 

K and NH4 
salts. 

Density 
of 

NH4 salt.' 

Difference 
between 

Rb and Cs 
salts. 

Density 
of 

Cs salt. 

Difference 
between 

Iv and Cs 
salts. 

Ni 2-237 0-349 2-586 -0-314 1-923 0-286 2-872 0-635 
Co 2-219 0-348 2-567 -0-318 1-901 0-277 2-844 0-625 
Mn — — 2-461 — 1-831 0-279 2-740 — 

Cu 2-233 0-341 2-574 -0-307 1-926 0-284 2-858 0-625 
Cd — — 2-695 — 2-061 0-262 2 • 957 -- 
Mg 2-034 0-352 2-386 -0-311 1-723 0-290 2" 676 0-642 
Zn 2-246 0-345 2-591 -0-314 1 • 932 0-284 2-875 0-629 
Fe 2-177 0-341 2-518 -0-313 1-864 0-278 2-796 0-619 

VOL. ccxvi.—A. i 
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Molecular Volumes Compared. 

M 
metal. 

Molecular 
volume 

of 
K salt. 

Difference 
between 

K and Rb 
salts. 

Molecular 
volume 

of 
Rb salt. 

Difference 
between 

K and NH4 
salts. 

Molecular 
volume 

of 
NH4 salt. 

Difference 
between 

Rb and Cs 
salts. 

Molecular 
volume 

of 
Cs salt. 

Difference 
between 

K and Cs 
salts. 

Ni 193-99 9-44 203-43 9-92 203-91 12-47 215-90 21-91 
Co 195-68 9-35 205-03 10-72 206-40 13-08 218-11 22-43 
Mn — — 212-26 — 212-13 12-69 224-95 — 

Cu 196-49 9-75 206-24 9-59 206-08 12-40 218-64 22-15 
Cd — — 214-98 — 216-12 12-74 227-72 — 

Mg 196-58 9-60 206-18 11-20 207-78 12-78 218-96 22-38 
Zn 196-16 9-42 205-58 10-22 206•38 12-39 217-97 21-81 
Fe 198-05 9-76 207-81 10-81 208-86 12-96 220-77 22-72 

Mean . . . 9 • 55 Mean . . . 10-41 Mean . . . 12-69 Mean . . . 22-23 

Molecular Distance Ratios (topic axial ratios).—When considered comparatively 

for the different salts these represent directionally in the crystal the same changes 

as are represented in total alteration of volume by the comparison of the molecular 

volumes. The ratios may be regarded as expressing the relative dimensions in space of 

the unit cells of the space-lattice of the crystal structure, the volume of the cell being 

expressed by the molecular volume. In the zinc and cadmium groups all three ratios 

of the ammonium salt are slightly greater than those of the rubidium salt ; in the 

magnesium, iron, manganese, nickel and cobalt groups x and V are slightly greater 

and m slightly less, and in the copper group y and f are slightly less and « slightly 

greater. Thus, on the average, just as for the molecular volume, the spatial axial 

ratios of the ammonium salt are slightly greater than for the intermediate rubidium 

salt. It will be observed that these results include, and are in agreement with, those 

previously published for the magnesium, zinc, and iron groups. 

It may now, therefore, be stated definitely for the whole series of double sulphates, 

without exception, that the replacement of potassium by ammonium (K2 by 2NH4) is 

accompanied by scarcely more change of volume, or change in the directional 

dimensions of the unit cell of the space-lattice, than when potassium is replaced by 

rubidium (K2 by Rb2), and by only half the change of volume which ensues on the 

replacement of potassium by csesium (K2 by Cs2). Regarded in another light, the 

replacement of the two atoms of rubidium by the ten atoms of the two ammonium 

NH4 radicle-groups is accompanied by scarcely any appreciable change in the structural 

dimensions, either molecular volume or topic axial ratios (volume or directional 

extension). 

Orientation of the Optical Ellipsoid.—Throughout the series the optical ellipsoid 

rotates about the symmetry axis h, which is in all cases the intermediate 8 axis of the 
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ellipsoid, on replacing potassium successively by rubidium and caesium, the positions 

following the order of the atomic weights of the alkali metals. The a axis of the 

ellipsoid is nearest to the vertical axis c of the crystal, and the approximation is 

closest, among the alkali-metal salts, for the potassium salt. It is even closer, except 

in the copper group, for the ammonium salt, the potassium salt coming next, then 

the rubidium salt and the caesium salt at such angles as accord with the order of the 

atomic weights, but with a higher function than mere direct proportion to atomic 

weight. In the copper group the ammonium and potassium salts exhibit optical 

ellipsoids almost identically situated, with the a axis inclined 18f° from the vertical 

axis c, the positions of the-ellipsoids of the rubidium and caesium salts still following 

the rule of progression. 

Refractive Indices.—In all the eight groups the refractive indices, including the 

mean index, of the ammonium salt are very close to those of the rubidium salt (which 

are always intermediate between those for the K and Cs salts), and usually very slightly 

higher. The double refraction of the ammonium salt also lies intermediate between 

the values for the corresponding rubidium and caesium salts, the situation varying in 

the different groups on either side of the half-way position ; on the average it lies 

nearer to the value for the rubidium salt. As regards the axial ratios (the directional 

dimensions) of the optical ellipsoid, the values for the ammonium salt of any group 

are intermediate between the values for the rubidium and caesium salts of the same 

group, and much nearer to the rubidium salt values. 

Molecular Optical Constants.—In specific refraction and dispersion the ammonium 

salt of every group is distinguished by values much higher than those for the alkali- 

metal salts of the same group. As regards the important property of molecular 

refraction, in every group of the series the value for the ammonium salt, whether 

calculated by the Lorenz or the Gladstone and Dale formula, is very close to and 

just slightly higher than the value for the rubidium salt, which itself is inter¬ 

mediate between the values for the potassium and caesium salts, in accordance with 

the law of progression with the atomic weight of the alkali metal. The molecular 

dispersion of the ammonium salt is nearest to the value for the corresponding caesium 

salt, in four groups being just lower than the latter, and in the other four groups 

just higher; for high dispersion is a characteristic property in which the ammonium 

salts exhibit the constitutional difference of the NIT4 radicle from the alkali metals 

which form the other R-bases in the isomorphous salts of the series. 

Optic Axial Angle.—No definite rule can be traced from a comparison of the optic 

axial angles of the ammonium salts with those of the salts containing the alkali 

metals ; these latter salts show a progressive change in optic axial angle with change 

of atomic weight of the alkali metal. 

Final Conclusion.—The work now described on the remaining five double sulphates 

containing ammonium confirms and emphasises the two main conclusions derived 

from the study of the three ammonium salts already described, which may be 

I 2 
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stated as follows:—(l) These ammonium salts are truly isomorphous with the 

similarly constituted potassium, rubidium, and caesium salts of the generic formula 

R2M (S04)2.6H20, but are not eutropic with them ; the potassium, rubidium, and 

caesium salts alone form the exclusive eutropic series, in which the crystallographic 

(morphological and physical) properties obey the law of progression with the atomic 

weight of the alkali metal, which has been established in the previous communica¬ 

tions concerning those salts. This law is particularly well illustrated by the fact, to 

which no exceptions have been observed, that the average change of angle between 

the crystal faces, and also the maximum change of interfacial angle (which usually 

occurs for the all-important monoclinic axial angle between the primary faces, 

and exceeds between a K and a Cs salt two whole degrees), are directly propor¬ 

tional to the change in atomic weight, when any one alkali metal is replaced by 

another. 

(2) The dimensions of the space-lattice of any ammonium salt of the series are 

nearly identical with those of the intermediate alkali metal salt, that containing 

rubidium as the R-metal; so that the two atoms of rubidium are replaced by the 

ten atoms of the two NH4 radicle-groups without appreciably altering the crystallo¬ 

graphic structural dimensions. 

To these may be added the following third general conclusion, which has been 

substantiated as regards thallium in a former communication* (3) The salts of 

this series in which R is thallium resemble the ammonium salts closely, in truly 

belonging to the isomorphous series, but not to the more exclusive eutropic series 

formed by the salts of potassium, rubidium, and caesium. Like the ammonium salts, 

the thallium salts also closely resemble the rubidium salts, but the thallium salts are 

distinguished optically, by their transcendent refractive power, both their refractive 

indices and their molecular refraction being far higher than for any other salts of 

the whole isomorphous series. 

An interesting memoir has recently appeared by F. M. Jaegerf on the crystallised 

ethylsulphates of the rare earths, Rf" (S04. G,H5)(!+ 18H20 in which R is Yt, Ce, 

La, Nd, Pr, Sm, Eu, Dys, Gd, Er, Thu, and NYb. Jaeger finds that the crystalline 

forms of these salts are so extremely close to each other that the differences fall 

within the limits of experimental error. He concludes, therefore, that they are 

rigorously identical, oscillating about a mean form in a manner entirely accidental. 

The rare earths, forming a group to themselves, and differing so little (especially 

in their sub-groups) in the values of their atomic weights, present an altogether 

different order of problem to the comparison of K, Rb, and Cs compounds. The 

series of rare earths belong to the central groups of the periodic system, in which 

the electro-positive property is at its minimum, and the chemical characters are 

so remarkably alike that extraordinary processes and refinement of method 

* ‘Roy. Soc. Proc.’ A, 1909, 83, 211. 

t ‘Recueil des Trav. Chim. des Pays-Bas,’ 1914, 33, 343. 
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are necessary in order to separate their compounds from each other. Extreme 

closeness of the crystallographic characters of their crystallised salts is, therefore, 

precisely what one would expect to find. The very opposite is the case for the 

alkali metals, which latter were chosen expressly by the author (Tutton) as belonging 

to the first group of the periodic system, exhibiting the electro-positive property at 

its maximum, while at the same time showing large differences (46 between K and 

Eb and 47 between Rb and Cs) in atomic weight. Moreover, the crystal system of 

the ethylsulphates of the rare earths is the hexagonal, and a comprehensive 

comparison of the author’s results on the rhombic (simple sulphates and selenates) 

and monoclinic (double sulphates and selenates) series has shown that the system of 

crystallisation has a preponderating effect on the angular differences, the latter being 

the smaller the higher the degree of symmetry. It might have been expected, a 

priori, that the monoclinic pair, say, K2Mg (S04)2.6H20 and Cs2Mg (S04)2. 6ELO 

would give closer angular values than the more symmetric rhombic pair, for example, 

K2S04 and Cs2S04, since there is a common “dead weight”; but experience proves 

the contrary, thus emphasising the effect of difference of system. Now the hexa¬ 

gonal is a higher system in degree of symmetry than the rhombic, and the angular 

differences (which the author found very small yet clear and unmistakeable in the 

rhombic sulphates and selenates, although not so large as those shown in the mono¬ 

clinic double salts) to be expected in the hexagonal system, other factors remaining 

the same, are still smaller, and might easily fall within the limits 2'-3' or there¬ 

abouts. Jaeger has, in fact, realised such a series, and his results are precisely what 

the author (Tutton) would have expected. It cannot be emphasised too strongly 

(a) that the author’s tables of angles of the whole 31 double sulphates, the 9 double 

selenates yet investigated, and the whole 10 simple sulphates and selenates, show a 

general correspondence of mean and calculated values within 2' for the rhombic simple 

salts and at most 5' (probably only 3') for the monoclinic double salts, and that the 

constants given by the author for each individual salt can certainly be relied on within 

these narrow limits ; and (b) that the deductions made by the author, such as the 

important one regarding the observed progression with the atomic weight of the 

alkali metal, are unquestionably valid, since the angular differences in question 

between the salts under comparison are far and away greater than these small limits 

of possible error, indeed in the maximum amounting to 2j°. 

The author has no doubt of the probable accuracy of the work of Jaeger, the 

results agreeing perfectly with the author’s expectations from the high symmetry 

displayed. The contribution is, moreover, a very welcome one at the present 

juncture. But if Jaeger’s deduction, as the author understands it, is that literally 

the axial ratio a : c of his hexagonal salts is rigorously the same for all the salts, the 

minute differences being considered only chance variations from this mean form, then 

the author must hold that this view is not a reasonable conclusion, and that it 

cannot be accepted ; it could in any case only be possibly true at some definite 
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temperature. There can be no doubt, however, that each salt has its own particular 

crystallographic angular values, and that there are real although very minute 

angular differences between the crystals of the various salts of the series, in accordance 

with the law of Hauy, which the author (Tutton) considers he has fully substantiated. 

This law provides that, except when the symmetry imposes identity of crystal angles 

(as in the cubic system and the 90°, 45°, 60°, and 30° angles of the tetragonal and 

hexagonal systems), every substance is characterised by its own specific crystalline 

form, the cases of isomorphism being only close resemblances within the limits 

of identity of symmetry. 
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IL The Electrical Conductivity and Luminosity of Flames containing 

Salt Vapours. 
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Received 31 May,—Read June 17, 1915. 

When the vapour of an alkali salt is present in a Bunsen flame the vapour becomes 

luminous and also increases the electrical conductivity of the flame. The fraction of 

the salt molecules which are luminous is probably very small, and unless the concen¬ 

tration of the salt vapour is very small the fraction of the salt molecules which are 

charged electrically, or are ionised, is also very small. 

Any particular salt molecule enters the flame at the bottom and moves up the 

flame with the velocity of the flame gases which is of the order of 200 cm. per second. 

The molecule is therefore in the flame for only a small fraction of a second, but this 

time interval is probably long enough for a state of equilibrium to be established 

between the several states in which the molecules can exist. For example, in the 

case of sodium chloride there is probably an equilibrium between NaCl, NaOH, 

Na20, Na, H20, HCL, and possibly other bodies such as CO, C02, and Na2C03. 

Each sodium atom must exist in the flame successively in different states and will, 

on the average, exist in each state a definite fraction of the time it is in the flame. 

Of course the time interval may not be long enough for every atom to pass through 

all the possible states, but on the average there will be a definite fraction of all the 

sodium at.oms in each possible state. In some of the possible states the atoms may 

be luminous during the whole or during only a fraction of the time the atoms are in 

those states, and during the whole or a part of the time the atoms are in any state 

they may be positively charged and so form ions. The object of the experiments 

described in this paper was to obtain information about the relative numbers of the 

atoms in the different possible states, especially the luminous state and the positively- 

charged state, and about the nature of the luminous state and the charged state. 

In an electric field the charged molecules or ions tend to move with a definite 

velocity proportional to the electric intensity. This velocity will be denoted by 

AX, where Jc is the velocity due to unit held and X the field strength. The average 

velocity, over a long time, of any particular metal atom due to the field will be fkH, 

where f denotes the fraction of the time during which the atom is in the positively- 

charged state. The time during which the atoms are in the flame may not be long 

enough for each atom to pass through all the possible states, so that actually only 
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a fraction of the atoms may be moved by the field. The average velocity of all the 

atoms due to the field will be equal to fJcX, but only a few atoms may actually move. 

If this happens, the velocities of those atoms which are moved by the field will lie 

between zero and JcX. A few atoms may be ionised all the time they are in the 

electric field and these will have the maximum velocity JcX. 

If the average life of an ion is small compared with the time the molecules are 

in the electric field, then all the molecules will move with the velocity /JcX, but if 

the average life is not small compared with the time the molecules are in the field, 

then the velocities will vary between zero and JcX, but the average for all the salt 

molecules will still be equal to fJcX. 

The rest of this paper is divided into the following sections :— 

I. Motion of luminous salt vapours in flames due to an electric field. 

II. Velocity of the positive ions of salt vapours in flames. 

III. Relation between luminosity and conductivity of salt vapours in flames. 

IV. Variation of the conductivity with the concentration of the salt vapour. 

V. Relative conductivities due to salts of different metals. 

VI. Summary and conclusion. 

Part I.—Motion of Luminous Salt Vapours in Flames due to an Electric 

Field. 

Lenard# found that the luminous streak of vapour from a salt bead in a flame 

could be deflected towards the negative electrode by a horizontal electric field. This 

deflexion has since been examined by Andrade.! 

The flame itself is also attracted by the negative electrode. Andrade observed 

the deflexion of the edge of the flame nearest to the negative electrode and 

subtracted this from the deflexion of the luminous streak to get the deflexion of the 

streak relatively to the flame gases. He found the deflexion of the flame to be about 

half that of the streak. I have repeated these experiments and found it difficult to 

be sure that there was any real difference between the deflexion of the flame and 

that of the streak of salt vapour. The edge of the flame is not sharply defined, and 

when salt was put in it seemed to me to change the deflexion of the edge of the 

flame if the vapour extended to the edge. I also found that in a flame which was 

little if at all deflected, there was little, if any, deflexion of the salt vapour, although 

a strong electric field was used. 

These preliminary experiments suggested that the deflexion of the luminous streak 

of salt vapour might be due to the deflexion of the flame as a whole, and not to a 

relative motion of the luminous salt molecules, through the flame, due to the electric 

field. 

* ‘Ann. d. Physik,’ 9, 3, pp. 642-650, Oct., 1902. 

t ‘ Phil. Mag.,’ June, 1912, and July, 1912. 
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On the other hand, it was found that when the electric field was strong enough 

to cause a great increase in the current, that is, when an arc discharge began to form, 

then luminous salt vapour appeared between the streak and the negative electrode; 

the negative electrode, if in the flame, emitted a stream of luminous salt vapour. 

The intensity of the luminosity between the streak and the negative electrode was 

much less than in the streak itself. This suggested that, while the luminous molecules 

in the streak were not deflected, positive ions were moving out of the streak towards 

the negative electrode and that these ions could form luminous vapour; these last 

results are in agreement with some of those of Andrade,* who showed that positive 

A * • • • 

ions from a streak when deposited on the negative electrode form luminous vapour. 

This fact was also previously observed by the writer.! 

It was therefore decided to attempt to measure the relative motion of the 

luminous salt vapour and flame gases due to an electric field by a new method 

which seemed to be capable of giving more reliable results than those previously used. 

The flame used was a Bunsen flame formed by burning a mixture of gasolene vapour 

and air from a special burner. ■ 

Fig. 1 shows a vertical section of the burner, and fig. 2 the top of it as seen from 

* ‘Phil. Mag.,’ July, 1912. 

t ‘ Proc. Royal Institution,’ Feb. 12, 1909. 
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above. A brass tube, TT7, about 3 cm. in diameter and 15 cm. long was soldered 

to a base plate, B. At D and D' brass disks were fitted tightly into the tube, TT'. 

Each of these disks had seven holes bored in it as shown in fig. 2, and seven 

parallel brass tubes connected the holes in the lower disk, D', with the holes in 

the upper disk, D. The mixture of gas and air entered through the side tube, G. 

The flame had seven sharply defined inner cones. The upper part of the burner 

was surrounded by a brass tube, A A7, about 4'5 cm. in diameter, supported by 

three small brass blocks not shown in the figure. 

A grating formed of ten platinum wires was fixed across the tube, AA7. about 

one millimetre from its upper end. This grating 

was heated bright red hot by the flame and 

formed one of the electrodes. A mixture of air 

and spray of a salt solution entered the burner 

through a second side tube, H, which led into the 

space between the seven tubes. This mixture 

entered the flame through a small hole, S, in 

the upper disk, 1), and produced a streak of salt 

vapour extending from S to the top of the flame. 

The air and spray entered H through a stop-cock 

which was rapidly opened and closed by means 

of an electric motor. The streak of vapour was 

therefore not continuous, but consisted of a series 

of puffs of vapour moving up the flame. The 

amount of salt in each puff could be varied by 

adjusting the pressure of the supply of air and 

spray. It could be diminished till the puffs were 

only just visible or increased till they were 

intensely luminous. 

The shaft of the motor carried a disk having 

four equidistant openings near its circumference. 

The stop-cock was opened four times during each 

revolution of the motor. The flame could be 

observed through the rotating disk so that it was then seen as many times per 

second as the stop-cock was opened. The puffs of salt vapour were then seen in 

the flame apparently stationary in a series of nearly equidistant positions one above 

the other. Fig. 3 shows the apparatus used. B is the burner and FF7 the flame. 

S is the stop-cock through which the air and spray entered, and DD7 the rotating 

disk carried by the motor shaft, M. AA7 is a wooden base covered with a sheet 

of asbestos, TT7. GG7 is a glass cylinder resting on the wooden base. The top of 

the cylinder is covered by a brass plate in the centre of which is fixed a vertical 

brass tube. C, which, with a tube, C7, formed a chimney up which the gases from 

M 
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the flame were led out of the room. The lower end of the tube, C, was fitted with 

a brass disk having a hole in it about 4 cm. in diameter, which was covered with 

a platinum wire grating like the one above the burner, B. At P a fine platinum 

wire was stretched horizontally across the flame perpendicular to the plane of the 

paper. This wire was carried by a glass tube which was supported on a slide, EE', 

so that the wire could be moved up and down along the vertical axis of the flame. 

The slide was provided with a millimetre scale and vernier. The potential difference 

between the wire, P, and the burner grating could be measured with an electrostatic 

voltmeter. 

The tube, C, and the upper grating were usually connected to the earth, through 

a galvanometer, and the burner, B, and lower grating could be connected to a 

battery of 1800 dry cells, giving up to 2700 volts. In this way a vertical electric 

field could be maintained in the flame between the upper and lower gratings. 

Let v denote the upward velocity of the flame, n the number of puffs of salt 

entering the flame per second, x1 the height of a puff as seen through the rotating 

disk and x2 the height of the next puff higher up. In the absence of an electric field 

the puffs simply move up with the flame so that 

v — n (x2—x1). 

The heights of the puffs could be measured by adjusting the wire, P, so that it 

coincided with their tops or bottoms and reading the vernier on the slide, EE'. 

About three puffs were visible when the number of puffs was rather over 100 per 

second. 

The puffs were equidistant showing the velocity of the flame to be sensibly uniform. 

It was found that x2—xx was nearly 3 cm. when N was equal to 100 per second. 

The velocity of the flame was therefore about 300 cm. per second and could be 

determined to within two or three per cent, without difficulty. The gas and air 

supplies to the flame were carefully regulated, and the gas and air were well mixed 

before they entered the burner. The burner gave an exceptionally steady and only 

slightly conical flame in the space between the wire gratings. 

Let lc denote the velocity of a luminous salt molecule in the flame due to an electric 

field of unit strength. We have 
« 

dx' = (v — kX.) dt, 

where x' denotes the height of the molecule above the lower grating, X the electric 

force reckoned positive when directed downwards, and t the time. Also in the 

absence of an electric field let 

dx — v dt, 

where x denotes the height of the molecule in this case. 
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Hence 

which gives 

dx — dx' -Xdx, 
v 

x—x' — - f X dx. 
V Jo 

But X dx denotes the potential difference between the lower grating and the point 
Jo 

a distance x higher up. Let this potential difference be denoted by V so that 

Jc = v{x-x')/V. 

Here x—x' is the distance through which a puff of salt appears to be moved 

downwards, as seen through the rotating disk, when the lower grating is connected 

to the battery. 

Since v — n {x2—x^) we have 

^ _ 7i (x.j—Xj) (x—x') 

If the puffs contain much salt vapour they have a greater conductivity than the 

rest of the flame so that the electric field will be less in the puffs than in the rest of 

the flame. In this case the salt inside the puffs will not be acted on by the whole of 

the potential fall, Y, so that the deflexion of the puffs will be smaller than that 

represented by the equation just given. In the case of sodium and strontium salts, 

which have small conductivity and intense luminosity, it was possible to observe the 

puffs when the amount of salt in them was not enough to change the conductivity 

appreciably so that with these salts no error could be produced by the conductivity of 

the puffs. The fact that the conductivity with small amounts of these salts was not' 

appreciable was shown by measuring the current with the stop-cock open all the time 

so as to get a continuous streak of the salt vapour. With small amounts of the salts 

the current was not increased by the salt more than 50 per cent. With the 

apparatus described it was found that the puffs of salt vapour did not appear to move 

at all when the battery was connected or disconnected. A motion of 0‘5 mm. could 

have been detected, and Y was increased to over 2000 volts in the case of some salts. 

This shows that k was less than 

100 x 3 x 0'05 

2000 
0‘0075 cm. per second per volt per centimetre. 

Salts of sodium, strontium and potassium were tried and no deflexion of the puffs 

of vapour could be detected in any case. The amount of salt in the puifs was varied 

as much as possible in each case. With sodium and strontium Y was increased to 

over 2000 volts, but with potassium it could not be raised above about 1000 volts 

without an arc striking between the electrodes. With sodium and strontium in 
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small amounts and large potentials the fall of potential was nearly uniform, but with 

potassium it nearly all occurred near the lower negative electrode. 

It was found that if the tube, A A' (fig. l), carrying the lower grating was removed 

and the burner itself used as the lower electrode then the puffs of salt were deflected 

downwards when the burner was charged negatively. The deflexion was about 

0‘5 cm. for 1000 volts in the case of all salts. 

This gives 

7 _ 100 x 3 x Q‘5 

1000 
= 0'15 cm. per second per volt per centimetre. 

Charging the burner negatively when the tube, AA', was removed depressed the 

inner cones of the flame and caused the flame to broaden out slightly just above the 

burner. Evidently the electric field retarded the upward motion of the flame and so 

produced the downward deflexion of the puffs of salt vapour. When the burner was 

charged positively no deflexion could be detected. The tube, AA', and platinum 

grating were therefore used to shield the inner cones from the electric field and to 

allow the puffs of salt to get well mixed with the flame before entering the field. 

The tube, AA', also served to greatly steady the flame. The flame is not affected by 

the field when the tube, A A', and lower grating are used because it is practically 

uniform throughout the distance between the upper and lower gratings. 

Since no deflexion of the puffs was obtained when using the lower grating and the 

tube, AA', it appears that the luminous salt vapours in flames do not really move 

relatively to the flame in an electric field. 1 think the motion observed by Lenard, 

Ebert and Andrade was due to the deflexion of the flame which is difficult to 

estimate and allow for. 

Andrade found k = 0T6 cm. per second per volt per centimetre, which is about 

twenty times the upper limit given by the experiments just described, but agrees 

nearly with the value found when the lower part of the flame was not protected from 

the electric field. When the potential difference between the two gratings was increased 

sufficiently an arc formed accompanied by a great increase in the current. The arc 

could be seen to form a luminous streak down the flame, and the electrodes got very 

hot at each end of the arc and fused if the arc was allowed to continue for long. 

When an arc was formed the puffs of salt vapour became more brightly luminous and 

the coloration due to the salt could be seen, although faintly, all along the track of 

the arc. The position of the puffs was not changed when an arc formed. It appears, 

therefore, that positive ions move down the flame from the puffs when an arc is 

formed and form a small amount of luminous salt vapour in the arc. I think some 

positive ions are probably deflected downwards from the puffs, even when the field is 

not strong enough to arc, but they are not numerous enough to form visible vapour. 

In the arc the temperature is higher so that a smaller amount of salt vapour becomes 

perceptibly luminous. 
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Part IT.—Velocity of the Positive Ions of Salt Vapours in Flames. 

Some new experiments on the velocity of the positive ions of salt vapours in flames 

will now be described. 

The apparatus of the previous section with some modifications was used. The 

central part of the grating at the top of the tube, A A' (fig. l), was removed and an 

insulated platinum wire electrode supported in the gap, so that the grating formed 

a guard ring round it. The wire supporting this electrode passed through a-hole in 

the tube, AA', about 3 cm. from the top of it. This electrode was connected to 

a galvanometer, the other terminal of which was connected to 

the burner, B. The arrangement is shown in fig. 4. The upper 

grating electrode was connected to earth and the burner, B. was 

charged negatively. The galvanometer then indicated a small 

current passing down the flame from the upper grating to the 

electrode in the middle of the lower grating. Most of the current 

through the flame went to the guard ring and so was not indicated 

by the galvanometer. The potential gradient in.the flame could be 

measured with the wire, PP', as before. The velocity of the flame 

was found with the puffs of salt vapour, but the puffs were not 

sent into the flame except when its velocity was being measured. 

A bead of salt on a platinum wire could be introduced into the 

flame just below the upper grating, and the effect of the bead on 

the current through the galvanometer and on the potential gradient 

was determined. The distance between the upper and the lower 

gratings was about 7 cm. 

It was found that putting in beads of lithium, sodium, potassium, 

rubidium, caesium and strontium salts had no appreciable effect on 

the current or on the potential gradient below the bead with any 

potential difference from zero to 2700 volts. The potential gradient 

just below the bead was about 100 volts per centimetre when the 

P.D. used was 2700 volts. The velocity of the flame was 300 cm. 

per second. This shows that the positive ions from the beads 

did not move down the flame, even with the P.D. of 2700 volts, 

so that their velocities due to 1 volt per centimetre were less than 3 cm. per second. 

The distance between the upper and lower gratings was then reduced to about 

3 cm. It was then found that putting in a bead of any salt just below the upper 

electrode slightly increased the current and also slightly increased the potential 

gradient below the salt. The gradient in the salt vapour above the bead was very 

small, so that, since the salt vapour occupied about 1 cm. of the flame below the upper 

electrode, the effect of the salt was much the same as moving the electrodes 1 cm. 

Fuj.i. 
F, flame. 

B, .burner. 

AA', tube round 

burner. 

G, upper grating. 

W, wire e 1 e c- 

trode. 
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nearer together. The increase in the current was about 25 per cent, with potentials 

up to 1800 volts. With 2700 volts the increase was larger, varying from 50 to 300 per 

cent, with different salts. This indicates that between 1800 and 2700 volts the 

positive ions began to move down the flame. If the salt beads were put into the 

flame about 1 cm. or 2 cm. below the upper grating, instead of close to it, an arc 

started with 2700 volts. Luminous salt vapour could be seen along the whole length 

of the arc. 

The potential gradient below the beads of salt with potentials between 1800 and 

2700 volts was about 300 volts per centimetre. Since the velocity of the flame was 

300 cm. per second, this shows that the velocity of the positive ions was about 

1 cm. per second for one volt per centimetre. The velocity was about the same for all 

salts, but could not be estimated accurately because the changes in the current due to 

putting in the beads increased gradually with the potential difference. It appears 

that the maximum velocity of the positive salt ions due to 1 volt per centimetre is not 

much greater than 1 cm. per second. 

In the earlier experiments by the writer,# it was found that a bead of salt below 

the upper electrode began to increase the current at a P.D. of about 100 volts. 

LusbyI obtained a similar result and also found that the salt diminished the potential 

gradient below the bead. These results appear to have been due to a small amount 

of salt getting into the flame below the bead. This was prevented, in the experiments 

just described, by the chimney attached to the upper electrode. In the absence of 

the chimney, it was found that putting a bead below the upper electrode increased 

the current and diminished the potential gradient even with small potential differences- 

The salt vapour from the bead gets into the lower parts of the flame partly by 

circulating round with the air surrounding the flame inside the apparatus and partly 

by escaping into the air in the room and then entering the burner along with the air 

supply. The chimney entirely stopped both these processes. There was a strong 

draught up the chimney so that the salt vapour from the bead went straight up the 

chimney and did not get into the air surrounding the flame. 

It appears that the earlier attempts to measure the velocity of the positive ions of 

salt vapours in flames gave values much too high. AndradeJ has recently obtained 

values of about 3 cm. per second for 1 volt per centimetre for the positive ions of 

strontium salts. The difference between this and the value of about 1 cm. per second 

just obtained may be due partly to differences between Andrade’s flames and mine. 

Also there may have been a few positive ions, even in my flames, with velocities 

greater than 1 cm. per second. 

When a large increase in the current is produced by putting in the bead an arc 

forms as already mentioned. The potential gradient necessary to start an arc was 

* ‘Phil. Trans.,’ A, vol. 192, p. 499, 1899. 

t ‘ Proc. Camb. Phil. Soc.,’ vol. xvi., PI. 1, 1910. 

J Loc. at. 
VOL. CCXVI.-A. L 
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rather greater than 300 volts per centimetre. I think, when any great number of 

positive ions moves down to the negative electrode an arc starts because the positive 

ions form salt vapour by recombining with negative ions, and the salt diminishes the 

drop of potential at the negative electrode and so increases the gradient between the 

electrodes. The gradient required for an arc to start on putting in a bead of salt is, 

therefore, probably that required to make a large number of positive salt ions move 

down the flame. According to the earlier experiments all salts give positive ions 

having equal velocities. This conclusion is probably correct in spite of the large error 

made in the absolute value of the velocity. The salt vapour really extended down 

the flame nearly to the lower electrode and was not confined to the part of the flame 

close to the bead as was supposed. The potential gradient which made the ions move 

down was therefore the gradient just above the lower electrode and not that just 

below the bead. This explanation of the large velocities obtained in the earlier 

experiments was suggested by Andrade. The present experiments have convinced 

me that his suggestion is correct. 

Part III.—-Relation Between Luminosity and Conductivity oe Salt 

Vapours in Flames. 

Some experiments on the changes in the luminosity and conductivity of flames 

containing sodium chloride, due to the addition of chloroform, will now be 

described. 

A mixture of air, spray of a sodium chloride solution and gasoline vapour produced 

by a sprayer was passed through a T-tube into two similar burners. The tube to 

one of the burners led the mixture through a vessel in which chloroform could be 

placed. 

The luminosities of the two flames were compared by means of a Hilgers’ spectro¬ 

photometer. 

Each flame contained two platinum electrodes separated by a horizontal distance of 

about 8 cm. A current from a battery of from 10 to 300 cells could be passed 

between these electrodes. In each flame two fine platinum wires were introduced 

about 5 cm. apart, and either pair could be connected to a quadrant electrometer. 

These wires were horizontal and perpendicular to the horizontal line joining the 

centres of the electrodes between which the current was passed. 

The current between the electrodes was measured with a galvanometer, and the 

ratio of the current to the potential difference between the fine wires was taken as 

a measure of the conductivity. When no chloroform was used the two flames 

had equal conductivities and luminosities. 

The following table contains the results obtained :— 
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Solution in sprayer 
(grammes NaCl per litre). 

Ratio of conductivities 
(without CHCI3 -r with CHC13). 

Ratio of luminosities 
(without CHCl3-rwith CHC13). 

0 8-0 1-9 
0-8 5-7 2-1 
4 6-0 1-9 

20 6-1 1-9 
200 6-0 1-9 

It appears that for all concentrations of the sodium chloride the chloroform 

diminished the conductivity about six times, and the luminosity about two times. 

It was found that the chloroform increased the current through the flame, although 

it diminished the conductivity. The current depends on the conductivity throughout 

the volume of the flame and on the resistance close to the negative electrode. The 

flame, away from the negative electrode, obeys Ohm’s law, but at the negative 

electrode there is a large fall of potential which is approximately proportional to the 

square of the current. The chloroform increased the current from four to ten times. 

Since the conductivity, measured by the ratio of the current to the potential gradient 

between the two wires, was diminished, it follows that the chloroform must have 

considerably diminished the fall of potential at the negative electrode. 

If potassium carbonate is put on the negative electrode the fall of potential there 

almost disappears, and then the current depends on the conductivity of the rest of 

the flame. It was found that with potassium carbonate on the negative electrode 

the chloroform decreased the current about six times in agreement with the change 

in the conductivity. The effect of the chloroform on the temperature of the flam? 

was measured with a thermocouple. It was found that the temperature of the couple 

was changed from about 1650° C. to 1600° C. 

If the current through the flame had been taken as a measure of its conductivity a 

large increase in the conductivity accompanied by a diminution of the luminosity 

would have been found. 

The relation between the potential difference used to send a current through a 

flame between clean platinum electrodes and the current is represented by the 

equation 
Y = Acd + Bc2. 

AVhere Y denotes the P.D., c the current, d the distance between the electrodes, and 

A and B are constants. The term Be2 represents the fall of the potential at the 

negative electrode, and the term Acd the fall of potential in the uniform gradient 

between the electrodes. It appears that the chloroform diminishes B but 

increases A. 

With small potentials and currents the term A cd is relatively more important, so 

that the chloroform then should decrease the current, while with large potentials the 

term A cd becomes negligible and then the chloroform increases the current. 

L 2 
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In the experiments of Smithells, Dawson, and the writer* it was found that 

chloroform diminished the current with very small potentials but increased it with 

EE, electrodes. DD, salt solution. QQ, row of quartz tubes. 

larger potentials. The potentials used in the present experiments were large and the 

chloroform increased the current. 

BB, burners. K, commutator. 

FF, flames. Q, quadrant electrometer. 

EEEE, electrodes. CC, battery. 

WWWW, platinum wires. 

It is clear that the current is not a measure of the conductivity, but the ratio of 

the current to the uniform electric intensity away from the negative electrode is 

proportional to the true conductivity of the flame. 

* ‘ Phil. Trans.,’ A, vol. 193, p. 89, 1899, 
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Experiments on the variation of the conductivity and luminosity with the 

concentration of the salt vapour in the flame will now be described. Two similar 

and equal sprayers were used, supplying a mixture of air, gas and spray, to two equal 

burners. The sprayers were adjusted so that when both contained the same solution 

the two flames had equal conductivities and luminosities. The electrodes in the two 

flames were connected in series so that the same current passed through each flame. 

The uniform potential gradients in the flames were then inversely proportional to 

their conductivities. Fig. 5 shows one of the burners and its sprayer. Fig. 6 shows 

the two flames and the electrical connections. The luminosities were compared with 

the spectrophotometer. 

The following table contains the results obtained with solutions of sodium 

chloride :—- 

Solutions sprayed 
(grammes NaCl per litre). 

Ratio of 
conductivities. 

Ratio of 
luminosities. 

Flame A. Flame B. A/B. A/B. 

20 20 1-00 1-00 
20 4 2-21 2-14 
20 0-8 5-00 4-62 
20 0-16 9-00 9-75 
20 0 33-3 36-7 

4 0-8 2-26 2-16 
0-8 0-16 2-40 2-11 
0-16 0-032 1-70 2-90 

It appears that both the luminosity and conductivity are roughly proportional to 

the square root of the concentration of the sodium chloride in the flame. It was 

shown by Gouy* that the luminosity is nearly proportional to the square root of the 

concentration. 

The following results were obtained with sodium carbonate solutions :— 

Solutions sprayed 
(grammes Na3C03 per litre). 

Conductivities. Luminosities. 

Flame A. Flame B. A/B. A/B. 

18-12 18-12 1 1 
18-12 1-812 3-1 2-9 
18-12 0-1812 9-8 8-6 

* ‘Ann. Chim. et Phys.,’ (5), 18, pp. 5-101 (1879). 
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It appears that the conductivity and luminosity due to the sodium carbonate are 

nearly proportional to the square root of the concentration as with sodium chloride. 

The following results were obtained :— 

Solutions sprayed 
(grammes per litre). 

Conductivities. Luminosities. 

Flame A. 
NaCl. 

Flame B. 
Na2C03. 

A/B. A/B. 

200 181-2 1-00 1-00 
20 18-12 1-00 1-00 

2 1-812 1 -00 1-00 
0-2 0-1812 1-00 1-00 

It appears that the conductivities and luminosities of sodium chloride and sodium 

carbonate in any chemically equivalent quantities are equal. 

rfhe luminosity due to a sodium chloride solution containing 20 gr. per litre 

was found to be equal to that due to a solution containing 20 gr. of sodium chloride 

and 200 c.c. of strong hydrochloric acid per litre. Thus an excess of HC1 does 

not affect the luminosity due to NaCl. This agrees with the conclusion that the 

effect of CHClg on the luminosity due to NaCl is due to the change in the character 

of the flame and not to chemical action. 

It was found that the sodium light luminosity due to a solution containing 18'12 gr. 

Na2C03 per litre was equal to that due to a solution containing 18'12 gr. Na2C03, 

and 23'6 gr. K2C03 per litre. The conductivity due to the solution containing 

K2C03 was about nine times that due to the one containing only Na2C03. The 

negative ions from the K2C03 must have diminished the number of positive sodium 

ions nine times, so that this result agrees with the conclusion that sodium light is not 

due to positive ions. 

Part IY.—The Relation Between the Conductivity and the Concentration 

of Salt Vapours in Flames. 

The earlier experiments of Arrpxenius* and of Smititells, Dawson and the 

writer! showed that the current is nearly proportional to the square root of the 

concentration when the concentration is small, Smithells, Dawson and the writer 

found that with larger concentrations the current due to oxysalts increases much 

more rapidly than as the square root of the concentration. In all these earlier 

* ‘ Wied. Ann.,’ vol. xliii., p. 18, 1891. 

t ‘Phil. Trans.,’ A, vol. 193, p. 89, 1899. 



LUMINOSITY OF FLAMES CONTAINING SALT VAPOURS. 77 

experiments the current, due to a constant P.D., between two platinum electrodes 

near together in the flame, was taken as a measure of the conductivity. 

The relation Y = Acd + Bc2 shows that when the electrodes are near together and 

the term Acd therefore small, the current depends mainly on the fall of potential at 

the negative electrode which is represented by Be2. 

The .conductivity of the flame in the uniform potential gradient between the 

electrodes has little influence on the current when the electrodes are near together. 

It seemed likely that measurements of the conductivity, as measured by the ratio 

of the current to the uniform potential gradient, away from the negative electrode, 

might give simpler and more easily interpreted results than those previously obtained. 

The apparatus described in the preceding section of this paper was used. The 

same current was passed through two similar flames and the ratio of the uniform 

potential gradients in them measured. The amount of salt in one flame was kept 

constant and that in the other varied. In this way the ratios of the conductivities 

of the second flame, with different amounts of salt in it, were found. The first flame 

merely served as a standard with which to compare the second one. It was not 

assumed that the two flames had equal conductivities when solutions of equal 

strength were sprayed into them, although this was roughly true. Variations in the 

gas and air supplies probably affected both flames nearly equally, and therefore 

had little effect on the results obtained. 

The following results were obtained with solutions of caesium chloride :— 

Solutions sprayed Ratio of 
(grammes CsCl per litre). conductivities. 

Flame A. Flame B. B/A. 

20 ■ 2 (RbCl) 80 3-13 
20-2 (RbCl) 8 1-00 
20-2 (RbCl) 0-8 0-301 

0*08 0-016 0-535 
0-08 0-032 0-813 
0-08 0-08 1-37 
0-08 0-16 1-92 

0 0 1-00 
0 0-0032 2-88 
0 0-008 5-72 
0 0-016 8-90 

0-8 0-8 0-75 
0-8 0-08 0-21 
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The following tables gives the conductivities of the flame containing different 

amounts of CsCl, deduced from the above results, taking that of the flame 

without salt equal to unity :— 

Solution sprayed 
(grammes CsCl per litre). 

Conductivity. 

0 1 
0•0032 2-88 
0 • 008 5-72 
0-016 8-9 
0 • 032 13-5 
0-08 22 • 7 
0-16 32-8 
0-8 85-2 
8-0 282 

80 883 

The ionic theory of the variation of the conductivity with the concentration will 

now be considered. 

Let S denote the number of salt molecules per cubic centimetre in the flame, 

ionised or not, and n the number of positive salt ions per cubic centimetre. Then 

S — n will be the number of lion-ionised salt molecules if we suppose one salt molecule 

gives one positive ion. 

Let F denote the number of flame molecules per cubic centimetre, which can be 

ionised, and m the number of flame-positive ions per cubic centimetre, F—m is then 

the number of non-ionised flame molecules per cubic centimetre. 

We then have 

S — n = an(n + m).(l) 

F—m — (3m (n + m),.(2) 

where a and (3 are constants ; a is the ratio of the coefficient of recombination of the 

positive salt ions with the negative ions to the fraction of the non-ionised salt 

molecules which ionise per second ; (3 is the same thing for the flame-positive ions. 

F is very large compared with S, and m is usually small compared with n. 

Hence m must be extremely small compared with F, so that F—m may be replaced 

by F. 

The conductivity (c) of the flame is proportional to the total number of ions per 

cubic centimetre, so that 

where A is a constant. 

Ac = n + m, (3) 
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Replacing F — m by F and eliminating n and m from (l), (2), and (3), we obtain 

8 + dr- = Ac. 
1 + a Ac /3Ac 

If we take c — 1 when S = 0 this becomes 

or 

S = Ac_ A 
1 + a Ac c 

S = A — (1+aAc).(4) 

When c is large this reduces to 

S = aAV. 

Since all salts give ions having the same velocities in the flame, it follows that the 

constant A should have the same value for all salts. The equation (4), therefore, 

only contains one constant (a) which varies with the nature of the salt. 

The fraction of the salt molecules which are ionised is given by 

n 1 

S 1+aAc 

Let k denote the concentration in grammes per litre of the solution sprayed into 

the flame, and let GS = 104&, where G is a constant proportional to the molecular 

weight of the salt. 

We have then 

A2—1 104£ = GA (l + a. Ac). 

When c is large suppose 104& = ac2, so that a — GaA2, and let b = GA, so that 

104& = 
c2— 1 

(6 + ac) 

and 

n 

S b + ac 

(5) 

(6) 

The equation (5) agrees with the values of c found for csesium chloride within the 

limits of experimental error if b = 10 and a = 1. The following table gives the 

VOL. CCXVI.-A. M 
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values of 104& calculated from (5), using the observed values of c. The calculations 

were done with a slide rule :— 

c. k (calculated). k (experimental). 

1 0 0 
2-88 0-00326 0-0032 
5-72 0-0087 0-008 

8-9 0-0166 0-016 
13-5 0-0315 0-032 
22 • 7 0-074 0-08 

32-8 0-14 0-16 
85-2 0-81 0-8 

282 8-2 8-0 

883 79-0 80-0 

The experimental numbers for c are probably reliable to about 5 per cent., so that 

when k is calculated from c the results may be in error by 10 per cent. 

The calculated and experimental values of k agree to less than 10 per cent, in 

nearly all cases. When the enormous variation in k, from 0'0032 to 80, is taken into 

account, it may be said that the results are in good agreement with the ionic theory. 

Since 
n _ b 

S b + ac 
we get for caesium chloride 

n _ 10 

S ~ 10 + c" 

The following table gives the percentage of the CsCl molecules, which are ionised 

in the flame according to this equation :— 

Solution sprayed 
(grammes CsCl per litre). -gx 100. 

0 90-9 
0-0032 75-6 
0-032 41-8 
0-16 22-0 
0-8 10-6 
8-0 3-5 

80-0 1-1 
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The salt vapour is not completely ionised when its concentration is extremely 

small, because of the finite number of flame ions present with which the salt ions can 

recombine. 

Part Y.—The Relative Conductivities of Salts of Different Alkali 

Metals. 

The relative conductivities of salts of different metals were determined with the 

apparatus described in Section III. The two flames were adjusted so that they had 

equal conductivities when the same solution was sprayed into them. 

It was found that when the. concentrations were large the conductivity was nearly 

proportional to the square root of the concentration with all salts. Results proving 

this to be true will be given later in this section. It follows that the ratio of the 

conductivities of any two salts, at equal concentrations, is independent of the 

concentration provided the concentration is large. 

The following table gives the results obtained :— 

Solutions sprayed 
(grammes per litre). 

Ratio of 
conductivities. 

Flame A. Flame B. B/A. 

18-12Na,C03 23-6 K2C03 9-3 
18-12Na,COs 25-6KC1 9'3 
25 • 6 KC1 20 • 2 RbCl 0-89 

8 CsCl 20-2 RbCl 0-89 

The following table gives the relative conductivities, at large concentrations, of the 

salts of different metals for concentrations such that equal numbers of metal atoms 

are present in the flame in each case. The conductivity for sodium salts is taken 

equal to unity :— 

Salt. Relative conductivities. 

NaCl 1 
Na2C03 1 

KC1 9-3 
k2co3 9-3 
RbCl 11-8 
CsCl 25-02 

These numbers were calculated from the relative conductivities given in the 

previous table. It was shown in Section III. that NaCl and Na2C03 have equal 

conductivities when present in chemically equivalent amounts. 

M 2 
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The following table gives the relative concentrations (proportional to metal atoms 

per unit volume) for which the conductivities are equal. These numbers are also 

only correct for large concentrations. The concentration is taken as unity in the 

case of caesium :—- 

Metal. Atomic weight. Concentration. 

Na 23 626-0 
K 39 7-25 

Rb 85 4-48 
Cs 133 1-00 

The equation 104/r = -(b + ac), which was found to represent the results 
c 

obtained with caesium chloride, can be applied to the other salts also. 

The constant a is proportional to the large concentrations in grammes per litre 

which give equal conductivities. The constant b has the same value for all salts 

when the concentrations are taken proportional to the number of metal atoms in unit 

volume. • When the concentrations are expressed in grammes per litre b is propor¬ 

tional to the molecular weight of the salt actually present in the flame. Since 

chlorides and carbonates give equal conductivities it is probable that chemically 

equivalent amounts give equal numbers of salt molecules in the flame. Probably 

the carbonates and chlorides are decomposed into oxides. The constant b for 

alkaline carbonates is therefore probably proportional to one-half their molecular 

weights. 

The following table gives the values of a and b calculated in this way so as to give 

k in grammes per litre in the solution sprayed into the flame :— 

Salt. a. b. 

NaCl 217-00 3-47 
NaoCOs 197-00 3-14 

KC1 3-20 4-42 
KoC03 3-0 4-10 
RbCl 3-20 7-20 
CsCl 1-00 10-00 

The following is an example of the method used for calculating the above constants. 

For RbCl we have 

121 

168-5 
a — lx 4 ‘48 x = 3-2. 
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Here 1 is the value of a for caesium chloride, 4'48 is the equivalent large concen¬ 

tration at which rubidium salts have conductivities equal to caesium salts at the large 

concentration unity, 121 is the equivalent weight of RbCl, and 168'5 that of CsCl. 

Also for RbCl 

121 
b = lOx 

168-5 
- 7’20 

where 10 is the value of b found for CsCl. 

c2—1 
To see if the equation 104£ =  -(b + ac) would give results agreeing with 

Q> 

experimental values, using the values of a and b given above, a number of 

measurements of the relative conductivities at small concentrations were made. 

The following results were obtained with solutions of RbCl:— 

Solutions sprayed Ratio of 
(grammes RbCl per litre). conductivities. 

Flame A. Flame B. B/A. 

0-0202 0 0-178 
0-0202 0-00202 0-34 
0-0202 0-0202 1-30 
0-0202 0-202 4-32 

Taking the conductivity when spraying water equal to unity, these results give 

the following numbers :—- 

Solution sprayed 
(grammes RbCl per litre) 

(k). 

Conductivity • 
(found). 

k 
(calculated). 

0 1 0 
0-00202 1-91 0-0019 

0-0202 7-30 0-0219 
0-202 ” 24-2 0-202 

The last column contains the values of k given by the equation 

2 1 

104£ = —- (7'2 + 3'2c). 
c 
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The following results were obtained with potassium carbonate :— 

Solution sprayed Ratio of 
(grammes K2CO3 per litre). conductivities. 

Flame A. Flame B. B/A. 

0-0236 0 0-164 
. 0-0236 0-00236 0-338 

0-0236 0-0236 1-300 
0-0236 0-236 4-59 

2-36 0-236 4-61 
2-36 2-36 1-39 

Taking C = 1 when k — 0, these results give the following values :— 

Solution sprayed 
(grammes K0CO3 per litre) 

(k). 

Conductivity 
(found). 

k 

(calculated). 

0 1 
0-00236 2-07 0-00164 
0-0236 7-98 0-0221 
0-236 28-0 0-246 
2-36 84-6 2-18 

The numbers in the third column are those given by the equation 

104£ = (41 + 3c). 

In Section III. the relative conductivities of several sodium chloride solutions are 

given. The following table gives numbers calculated from those results taking 

c = 30’3 when k = 20 gr. per litre. The value c = 30‘3 when k = 20 was got from 

the relative conductivities found for csesium and sodium salts :— 

Solution sprayed 
(grammes NaCl per litre) 

(k). 

Conductivity (found). Jc (calculated). 

20 30-3 19-9 
4 13-7 4-05 
0-8 6-06 0-79 
0-16 2-95 0-168 
0-032 1-73 0-044 
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The last column contains numbers given by the equation 10ik = 
c2 — 1 

(3'5 + 217c). 

The following table gives the percentage of the salt molecules ionised when 1c is 

very small so that c — 1. These numbers were calculated by means of the equation 

putting c = 1. 

n _ b 

S b + ac ' 

Salt. 

o
 

o
 

T—H X
 

NaCl 1-6 

Na,COs 1-6 

KC1 58-0 
K0CO3 58-0 
EbCl 69-0 
CsCl 90-9 

The ionization is not complete when the concentration of the salt vapour is very 

small because of the finite number of flame ions present with which the salt ions can 

recombine. 

o JO ZO 30 40 JO 60 

7 

70 so op wo 
C - JC 

The equation 104& =  -- (b + ac) shows that ^C is a linear function of c. Fig. 7 
c ' ' c* — 1 

shows graphically the relation between the experimental values of 
10 4£c 
c2 — 1 

and c for 
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CsCl and KbCl. The straight lines are those given by the equation y — b + ac. The 

crosses representing the experimental results fall nearly on the straight lines. Fig. 8 

and fig. 9 show the same thing for K2C03 and NaCl. In the case of NaCl the 

straight line passes practically through the origin but with the other salts it is clear 

that this is not the case. The larger values of c and 
104£c 

2 T 
C — 1 

are not shown. They 

were used to calculate the constant a and so, of course, the points representing them 

would fall on the straight lines given by y = b + ac since b becomes negligible when 

c is large. 

If a solution containing two or more salts is sprayed into the flame, then, since the 

ions from one salt can combine with the ions from the other, the conductivity should 

not be equal to the sum of the conductivities due to equal amounts of each salt alone. 

Let there be S molecules of one salt and S' of the other present per cubic 

centimetre in the flame. Let the first salt produce n positive ions per cubic 

centimetre, and the second n'. We have 

S— n — cm{n + n'+m), 

S'—n' = aV(» + »' + m), 

F = (3m (n + nr + m), 

Ac = n + n' + m. 
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Here F, m and /3 relate to the flame as before. These equations give 

Ac2—1 = S ( S' 

C 1+aAc 1+a'Ac 

where c is taken equal to unity when 

S = S' = 0. 

Let 104& = GS, 104F = G'S', b = GA, V — G'A, a = GaA2, and a' = GVA2, so that 

c2-l = lO4^ 104F 

c b + ac ‘ b' + a'c' 

To test this equation the conductivity, due to a solution of 9'06 gr. Na2C03 and 

0T64 gr. K2C03 in a litre, was compared with that due to a solution of 18T2 gr. of 

Na2C03 in a litre. The first solution gave a conductivity equal to 1'06 times that of 

the second. For the second solution c = 30'3, so that c for the mixture was 32'2. 

The above equation gives c = 31'55. The sum of the conductivities due to the Na2C03 

and K2C03 when not mixed is 44'6. 

VOL. CCXVI.-A. N 
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Part VI.—Summary of Results and Conclusion. 

The chief results obtained are as follows :— 

(l.) The luminous vapours of salts in a Bunsen flame are not deflected appreciably 

by an electric field. 

(2.) The positive ions present in the luminous vapour can be made to move out of 

it by an electric field. 

(3.) The positive ions are not luminous, but can form luminous vapour after 

recombination. 

(4.) The velocity of the positive salt ions in flames is about 1 cm. per second for 

1 volt per centimetre and is the same for all salts. 

(5.) The conductivity and luminosity of sodium chloride both vary nearly as the 

square root of the concentration of the salt vapour in the flame. 

(6.) The conductivities and luminosities of chemically equivalent amounts of sodium 

chloride and sodium carbonate are equal. 

(7.) A considerable excess of hydrochloric acid does not change the luminosity due 

to sodium chloride and slightly increases the conductivity of the flame. 

(8.) A large excess of hydrochloric acid obtained by the introduction of 

chloroform vapour diminishes the luminosity due to NaCl about 50 per cent., 

and diminishes the conductivity about six times. The percentage changes in 

the luminosity and conductivity are independent of the concentration of the NaCl 

vapour. 

(9.) The CHClg increases the current due to large potential differences, but diminishes 

the conductivity as measured by the ratio of the current to the uniform potential 

gradient in the flame. 

(10.) When the drop of potential at the negative electrode is got rid of by putting 

K2C03 on it, the CHC13 diminishes the current to about the same extent as the 

conductivity. 

(ll.) The presence of a large amount of K2C03 does not change the luminosity 

due to Na2C03, although the K2C03 greatly increases the total conductivity. 

(12.) The variation of the conductivity (c) with the concentration (k) for alkali 
9 -I 

c — 1 
salts can be represented by the equation 104£ = 

the constants a and b for each salt. 

(b + ac), using proper values of 

(13.) The equation 104& 
c2— 1 

(b + ac) can be deduced from the ionic theory and 

the fraction of the salt molecules which are ionised is equal to b/(b + ac). 

(14.) Alkaline chlorides and carbonates impart equal conductivities to the flame 

for chemically equivalent concentrations. 
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(15.) The percentage of the salt which is ionised when the concentration is very 

small has the following values :— 

Caesium salts.91 

Rubidium salts ..69 

Potassium salts.58 

Sodium salts. 1 '6 

(16.) The constant, b, is proportional to the molecular weight of the salt. 

According to the theory this shows that all salts give negative ions having the 

same velocity due to an electric field. 

(17.) The conductivity due to solutions containing a mixture of salts agrees with 

that to be expected on the ionic theory. 

It is probable that the luminous salt vapours are not appreciably moved by an 

electric field because very few of the salt molecules which become luminous, while 

the salt passes through the flame, also get ionised. 

If f denotes the fraction of the salt molecules which are ionised in the flame 

at any instant, then fJcX. will be the average velocity of a salt molecule over a 

long time due to an electric field. Now f for sodium is very much smaller than 

for csesium, yet both give positive ions, having about the same velocity. We 

conclude, therefore, that the ionic velocities observed are .not of the values of 

fkK, but the maximum possible velocities 7cX. It follows that when a salt mole¬ 

cule ionises, the ions sometimes last long enough for their velocity to be measured 

before they recombine. The method used to measure the ionic velocities indicates 

the maximum velocities, not the average velocity for a large number of ions. 

According to the most recent theories of ionic velocity, the velocity depends 

chiefly on the nature of the gas in which the ions move, and not much on the 

mass of the ions. We should, therefore/expect Jc to be about the same for ions of 

different salts all moving in the same flame. 

The fact, first discovered by Gouy and here confirmed, that the luminosity due 

to sodium salts varies nearly as the square root of the concentration indicates that 

the luminous molecules are produced by a binary reaction from the sodium salt. 

If the luminosity is due to atoms of sodium, a possible reaction is Na20 + C0 = 

2Na + C02. 

CO and C02 are both present in large quantities in the flame, so that their 

concentrations may be regarded as constants, and therefore the concentration of 

the Na will vary as the square root of the concentration of the Na20. Probably 

nearly all the salt is converted into Na20 in the flame so that the concentration 

of the salt is proportional to the concentration of the Na20, when the concentration 

is not very small. 

It seems probable that adding HC1 to the flame does not prevent the conversion 

of NaCl into Na20 by the flame gases. Otherwise, HC1 should diminish the 
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luminosity by an amount depending on the ratio of the concentration of the sodium to 

the concentration of the HC1. It appears that the reaction Na20 + 2HC1 = 2NaCl + H20 

does not proceed appreciably at the temperature of the flame. The small effect which 

the HC1 has on the luminosity is probably due to the change in the temperature of 

the flame together, possibly, with other causes. 

The effect of the HC1 on the conductivity was also independent of the ratio of the 

concentrations of the sodium and HC1. It follows, as for the luminosity, that the 

effect must be due to the change in the nature of the flame produced by the HC1 and 

not to chemical action of the HC1 on the sodium salts. Possibly the HC1 condenses 

on the negative ions, so diminishing their velocity. 

The effect of the HC1 on the fall of potential at the negative electrode may be due 

to its causing the electrode to emit negative electrons. 

In the earlier experiments of Smithells, Dawson, and the writer, it was found 

that at large concentrations oxysalts gave greater currents than haloid salts. The 

present experiments show that the conductivity is the same for haloid and oxysalts 

at all concentrations. It follows that the oxysalts diminish the fall of potential at 

the negative electrode when present in large quantities, while the haloid salts do not 

do so to the same extent. The amount of salt which entered the flame in the present 

experiments was rather greater than in the earlier experiments, for solutions of equal 

concentration. 

The present experiments on the variation of the conductivity with the concentration 

can be explained in a satisfactory way on the ionic theory, and they confirm the view 

that all salts give negative ions, having equal velocities in the flame. 

The fact that K2C03 does not diminish the luminosity due to Na2C03 seems to show 

conclusively that the luminosity is not due to positive ions. The K2C03 increased the 

number of negative ions about nine times, and, therefore, must have diminished the 

number of positive sodium ions in the same ratio. That the negative ions from 

K2COg do combine with the positive ions from Na2C03 is shown by the fact that the 

conductivity of a mixture of sodium and potassium carbonates is less than the sum of 

their separate conductivities as it should be according to the ionic theory. 

In conclusion, I wish to say that my thanks are due to the trustees of the Pice 

Institute for the facilities for experimental work which they have provided. 
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III. The Threshold of Vision for Different Coloured Lights. 

Bij Sir W. de W. Abney, K.C.B., D.C.L., D.Sc., F.B.S., and 

Prof. W. Watson, D.Sc., F.B.S. 

Received June 4,—Read June 17, 1915. 

1. The question as to the sensitiveness of the different regions of the retina to light 

of various wave-lengths is one which has received a considerable amount of attention. 

The results obtained by previous observers, while being in agreement in certain 

particulars, yet differ materially in others. For instance, the question as to whether 

dark adaptation takes place at the fovea and the controversy as to whether there is 

a failure of the secondary image at the fovea may be cited. In the course of some 

other experiments we were led to investigate certain differences which existed between 

our own eyes. The results obtained seem to throw a very considerable amount of light 

on the differences obtained by previous workers as well as to give interesting 

information as to the action of the retina. 

Our results support the idea that we have to do with two distinct processes when 

considering the variation in the sensations produced by light, a view which was first 

put forward by Parinaud and has been elaborated by yon Kries. The latter 

further identifies the rods and cones respectively as the two receptive elements of the 

retina. He supposes that the cones are responsible for all sensations of colour and 

are chiefly operative at medium and high illuminations. The rods he supposes are 

chiefly operative at low illuminations and only to come into action when the 

illumination is so low that all perception of colour is wanting, so that whatever the 

wave-length of the light stimulus the sensation produced is one corresponding to 

white or grey. Although our experiments do not provide any evidence as to the 

identification of the rods and cones with these two forms of vision, yet it saves so 

much circumlocution to speak of the sensation due to the cones or rods as the 

case may be that we shall use the terminology of yon Kries. Thus when we 

speak of the sensation due to the rods we must be understood to mean the 

sensation due to that mechanism, whatever it is, which is alone operative at low 

illuminations in the central part of the retina, and similarly for the sensation due to 

the cones. 

VOL. ccxyi.—a 540. o [Published December 6, 1915. 
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2. Threshold of Light. Extinction Curves: 

A series of experiments have been made .to determine the minimum intensity of 

light of the various colours which can be perceived when received on the fovea and 

at different distances from its centre up to 10 degrees. The chief difficulty in 

obtaining these measurements was to ensure correct fixation and to avoid retinal 

fatigue. Experiment showed that both these difficulties were very much reduced 

if the stimulus light in place of being continuously in action was only applied for 

a short time, sa3^ about a second, with a comparatively long interval between 

flashes. 

With a Nernst light the arrangement employed is a slight modification of the arc 

colour-patch apparatus. It is shown diagrammatically in fig. 1. The source of light, 

a Nernst glower, A, is enclosed in a blackened metal box which has a small rectangular 

opening, the width of this opening being such that the glower is not screened from the 

collimator lens, C, and the height of the opening being such as to give a convenient 

width of spectrum. No collimator slit was employed, the glower itself acting as the 

slit and being placed at the principal focus of the lens, C. The dispersion train 

consists of two 60 prisms, D. A lens, E, forms a pure spectrum in the plane, FG, of 

a slide which carries a slit by means of which any required colour can be isolated. 

The position of this slit is read by means of a transparent scale attached to the slide, 
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an image of this scale being projected by means of a lamp, M, and lens, P, on to a card 

fixed at 0 to a screen, OS, covered with black velvet. Attached to the slide, FG, is 

an annulus, Q, which has been described by one of us in a previous paper (‘ Phil. 

Trans.,’ A, 190, 156, 1897). This annulus consists of a uniformly increasing wedge 

of gelatine impregnated with finely divided lamp black. The annulus can be rotated 

by means of a milled head attached to a pinion which engages with a circular rack 

attached to the glass carrying the annulus. A graduated circle is also attached so 

that the part of the annulus opposite the slit can be identified. The light after 

passing through the annulus is received by a large lens, H, which forms an image of 

the front face of the prism train in the plane of the screen, OS. This image is 

received on a metal disc, I, which is covered with magnesium oxide.# The velvet- 

lined recess, T, is of such a depth that the light which misses the disc, I, and strikes 

the back of the recess and might be reflected from it, cannot reach the eye of the 

observer who is at L. Tunnels, R and Pd, lined with black velvet are used to screen 

off any stray light. Further, the Nernst light, prisms, &c., are all enclosed in boxes 

which are painted dead black inside. The instrument is placed in a room which can 

be rendered entirely dark. Small 3-candle power electric lamps, which are themselves 

screened and only switched on when required, are used to make the necessary readings 

of the annulus. These readings are made by an assistant who also keeps the current 

passing through the Nernst lamp constant. 

Between the Nernst glower and the collimator lens is placed a pivoted screen, B, 

which normally cuts off the light from the collimator lens. By pressing a key, M, 

placed near the observer’s hand, the screen, B, is raised by an electro-magnet. Thus 

the light only reaches the disc, I, when the observer presses the key, while by turning 

the milled head attached to the annulus he can alter the intensity of the light which 

falls on the disc, I. To give a fixation spot a rod of glass, J, is drawn down at the 

end to a diameter of about a millimetre and ground off at about 45 degrees. A small 

electric lamp, K, enclosed in a box with a small window covered with red glass, is 

placed opposite the end of this rod. The light from the lamp passes down the glass 

rod and owing to internal reflections does not escape from the sides till it reaches the 

ground end. At this end the light is scattered and thus gives a small source of red 

light. (By means of a resistance in the circuit of the lamp the intensity of this 

fixation light can be adjusted.) When fixation is desired for the central part of the 

retina, the circuits are so arranged that on depressing the key, M, the lamp, K, is 

extinguished. Thus the depression of the key by the observer causes the fixation 

light to disappear, and at the same instant causes the coloured light to illuminate 

the disc, I. When working away from the fovea the fixation light is disconnected 

from the key, M, so that the fixation spot does not vanish when the stimulus light 

is turned on. The reason for using a deep red fixation light is that such a light has 

little or no stimulus value for the rods. 

* Obtained by holding the disc over a piece of burning magnesium wire. 

O 2 
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The amount by which the light coming through the slit in the spectrum is reduced 

owing to its passage through the annulus depends for any given position of the annulus 

not only on the colour of the light but also on the distance of the receiving surface, I, 

from the annulus. The reason is that in the first place the coefficient of absorption 

of the annulus is a function of the wave-length. Secondly, there is a certain small 

amount of light scattered by the annulus, and the amount of this scattered light which 

falls on the disc depends on the distance. Hence it was necessary to measure the 

absorption of the annulus throughout the spectrum in exactly the same relative 

position as that in which it is used. This calibration involved a very considerable 

amount of work but need not be described. 

It enabled us to calculate for any wave-length and for any annulus reading what 

fraction of the light passing through the slit fell on the disc. The intensity of the 

light falling on the disc, when the slit was placed at the sodium line, was determined 

by comparison with a standard Hefner lamp. This lamp is very suitable for the 

purpose, as the colour of its light does not differ greatly from that of the D line. 

The procedure adopted was for the observer, who had been in complete darkness 

for more than half-an-hour, to look steadily with both eyes at the fixation spot 

and then to press the key, M, for about a second, thus allowing the light to fall on the 

disc, I, for this time. If the light was visible, he then turned the annulus so as 

to reduce the light, and again pressed the key. This process was continued till the 

light was just imperceptible when the key was pressed. The circle attached to the 

annulus having been read, the annulus was turned so as to make the light brighter, 

when the setting was repeated. In general, three settings were taken at each 

selected wave-length. 

When observing away from the fovea the fixation spot was always placed vertically 

above the disc on which the stimulus light was received. Unless otherwise mentioned, 

the disc, on which the light was received, had a diameter of 6‘3 mm., and was at 

a distance of 72 cm. from the observer’s eye, so that the angle subtended at the eye 

was 34 minutes. 

With the fixation spot at 1 '5 mm. or more away from the centre of the disc, all the 

observers found it quite easy to obtain consistent results. With foveal fixation, some 

observers required a little practice before they were able to overcome the tendency for 

the eye to wander. The reason for this tendency is that for most people the sensi¬ 

tiveness of the retina increases (except in the red), that is the threshold value 

decreases, rapidly as we go out from the fovea, and hence, when striving to see the 

last glimmer of light they instinctively shift the axis of the eye so as to bring the 

image on the more sensitive area surrounding the fovea. The curves shown in 

fig. 2 illustrate the successive readings of the annulus obtained by one untrained 

observer with central fixation.* At the first attempt the numbers obtained correspond 

* The numbers plotted in this figure are the annulus readings. The greater the annulus reading the 

greater the reduction in the light. 
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to those obtained with the fixation spot at 2‘5 degrees from the fovea. At the 

second attempt the fixation was better but still not central. At the third attempt, 

the start in each case being made at the red end of the spectrum, the fixation was 

central down to SSN 40, after which the eye wandered slightly. During the fourth, 

fifth, and sixth sets of readings, the fixation was kept central throughout, and all the 

points obtained are in good agreement. 

On the supposition that we start with a spectrum of such an intensity that 

the illumination on the disc when the slit is at the D line is one lux (metre-candle), 

we have calculated from the annulus readings by how much the light has to 

be reduced to reach the threshold for the different parts of the spectrum. This 

.SSN 

Fig. 2. 

reduction, in conformity with the nomenclature used by one of us in previous papers, 

we shall call the extinction. The actual numbers obtained for the extinction, except 

of course at the D line, will depend on the distribution of light in the spectrum employed, 

that is on the source of light and on the dispersion curve of the prisms. In order 

to obtain numbers which do not involve 'these quantities we have determined 

the distribution of energy in the spectrum we have used, so that we can calculate 

what is the energy of the radiation falling on unit area of the disc. I, at the threshold. 

Since our measures of the energy are relative they give the comparative distribution 

of energy throughout the spectrum, but do not give the absolute values, as we have 

to fix an arbitrary unit. Since it is convenient to tabulate and plot the figures in the 

logarithms of the energy, it is advisable to avoid the use of negative characteristics, 
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our unit is such that when the intensity of illumination by the D light on the disc, I, 

is one lux the energy per square centimetre is equal to 100,000 such units. 

A measurement of the light diffused from the magnesium oxide surface showed 

that when the illumination of this surface was one lux the radiation it sends out 

normally per square centimetre is equal to 0'000026 candles, so that if the cosine law 

be assumed to hold the coefficient of reflection is 0'83. 

In order to obtain the energy distribution in the spectrum, a linear thermopile was 

attached to the slide, FG, fig. 1, and the deflections of a sensitive galvanometer were 

read as the pile moved through the spectrum. In order to reduce the effect of stray 

heat a pair of slits were placed one in front of the other before the pile and a water 

cell was interposed between the Nernst glower and the collimator lens. As a test to 

see whether stray radiation had been eliminated, the water cell was replaced by one 

containing a solution of iodine in carbon bisulphide. This cell, while entirely cutting 

off the visible spectrum, allowed most of the infra red to pass. While there was a 

large deflection when the pile was placed beyond the red, there was no observable 

deflection while the pile moved throughout the region ordinarily occupied by the 

visible spectrum. Since a similar spectrum apparatus to that shown in fig. 1, except 

that the crater of an electric arc is the source of light, has been used for some of the 

experiments described in this paper, and further that it is the one used throughout 

the series of researches conducted by one of us for many years, we have determined 

the energy distribution of this source. In Table I. and fig. 3 we give the results 

Table I.—Energy Distribution in Spectrum. Sources of Light : the Nernst 

Glower, and Positive Crater of Arc. 

SSN. A (/*/*). 

Energy. 

SSN. A (/x/x). . 

Energy. 

Nernst. Arc. Nernst. Arc. 

64 721-7 396 182 35 . 504-3 27-0 42-3 
62 695-7 325 166 34 500-2 25-2 40-0 
60 672-8 261 151 32 492-4 21 * 2 35-2 
58 652-1 205 137 30 484-8 17-9 30-7 
56 633 • 0 165 126 28 477-6 J 5 • 3 26-9 
55 624-2 151 121 26 470-7 12-9 23-8 
54 615-2 137 116 25 467-0 12-0 22-3 
52 599 • 6 114 106 24 463-9 11-2 20-8 
50 585 • 0 96 97 22 . 457-8 9-7 18-2 
48 572-0 80 89 20 451-7 8-4 16-0 
46 559-6 68 81 18 445 ■ 9 7-2 13-8 
45 553-8 62-5 77 16 440-4 6-1 11-9 
44 548-1 57 73 15 438-1 5-7 11-1 
42 537 • 3 46-5 65-5 14 434-9 5-2 10-4 
40 527-0 39-6 58 12 429-6 4-2 9-0 
38 517-2 34-3 51-5 10 424-5 3-3 8-2 
36 508-5 29-6 45-5 
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obtained with the two instruments. In Table I. will also be found the wave-lengths 

corresponding to the dispersion scale, the readings of which are indicated by the 

letters SSN, and which are used throughout this paper to indicate the different colours. 

In Table II. are given the results obtained by eight observers. Of these A. and W. 

are the authors, and B. is Mr. W. Brapfield, the assistant in the Colour Vision 

Laboratory, to whom we are very much indebted for great assistance throughout the 

work. Observers T., Bk., Ar. and B. were students in the advanced Physics Class, and 

N. is one of our colleagues. Of these observers A., W., B., T. and Bk. have normal 

colour vision, Ar. and N. are dichromates, Ar. being green blind (deuteranope) and N. 

red blind (protanope), while R. is a case of a displaced green sensation curve whose 

case has already been described in a previous paper (‘ Roy. Soc. Proc.,’ A, vol. 89, 232, 

1913). Observations were in each case made throughout the spectrum using central 

fixation, and also with the fixation spot 1'25, 2‘5. 5, and 10 degrees shown above the 

centre ol the disc on which the stimulus light was received. 
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In fig. 4 the logarithms of the energy at the threshold are plotted against the 

deviations (colour) for W., while in fig. 5 the corresponding curves for B. are given. 

In the case of W. the curve corresponding to the fovea is very much higher, i.e., the 

threshold is higher that for the peripheral curves, and with the intensity of spectrum 

used the central curve could not be traced beyond SSN 35 on the blue side. In the 

case of B., however, the foveal curve is lower than any of the others, showing that for 

this observer the threshold is lower at the fovea than for any other part of the retina, 

while all the curves can be traced right down to SSN 10. For W. as we proceed out¬ 

wards from the fovea the threshold values, except in the red, rapidly decrease, 

indicating an increasing sensitiveness, up to 5 degrees, there being a slight decrease at 

p 2 
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10 degrees. For B., while the threshold at the fovea is slightly lower than for the rest 

of the retina, the values obtained at the other distances are very nearly the same, 

indicating that over this region of his retina the sensitiveness remains practically 

constant for light of very low intensities. This peculiarity that the sensitiveness 

of B. s retina for feeble lights is a maximum at the fovea has some interesting con¬ 

sequences. Thus he finds no difficulty in obtaining central fixation and he can obtain 

luminosity measurements even with very feeble intensities which are quite consistent. 

With W., on the contrary, central fixation with feeble lights is difficult, and when he 

attempts to make luminosity measurements at low intensities his results are very 

irregular, owing to the tendency to use the parafoveal regions of the retina, which are 

more sensitive than the fovea. Adopting as beforesaid for convenience yon Kries’s 
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theory, the results indicate that in the case of W. the fovea is free from rods while the 

number of rods increase rapidly as we go from tire fovea. In the case of B., however, 

the distribution of rods, at any rate up to at least 10 degrees, is very nearly uniform, 

if anything there being an excess at the fovea. It is, however, possible that the lower 

value for the threshold obtained at the fovea may be due to the better definition of the 

SSN 
Fig. 6. _ 

image formed at the fovea, so that the falling off of the sensitiveness as we go from 

the fovea may possibly be due to spherical aberration of the eye. 

In fig. 6 the curves corresponding to tire foveal measurements for all the observers are 

plotted together, and it will be seen that in the case of observers W., T., Bk., Pi. and 

N. the curves are in very fair agreement, and we may classify these persons as belong¬ 

ing to a single class, I., who have a fovea practically free from rods. Observers B., A. 
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and Ar. on the other hand belong to another class, II., who have a more or less 

plentiful supply of rods at the fovea. 

Since persons belonging to class II. so far appear to be less common, and as much 

greater individual variation occurs in this class than in class I., we give the series 

of curves for the two other observers of class II. It will be noticed that in the case of 

A (fig. 7) the threshold values at the fovea are the highest except in the red, while the 

values at 1’25 degrees from the fovea are the lowest. The differences for the different- 

parts of the region studied are not however very great, so that up to 10 degrees from 

the fovea the distribution of rods is fairly uniform. In the case of Ar. (fig. 8) there 

is a fairly uniform decrease in the threshold values as we go out from the fovea, at any 

rate up to 10 degrees. 
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The differences obtained at the fovea between observers belonging to the two 

classes could be explained without supposing any distinction as to the distribution of 

rods if we suppose that the observers belonging to class II. did not obtain correct 

foveal fixation. There is, however, strong evidence that this is not the correct 

explanation. In the first place observers A. and B. are very expert in making this 

10 20 30 40 50 60 

SSAT 

Fig. 8. • 

kind of observation. They can repeat their measures day after day even after many 

months and obtain constant values. Had there been any faulty fixation the 

measurements obtained would not remain constant but would be of the same nature 

as those illustrated in fig. 2. Further evidence that in the case of A. and B. there are 

rods at the fovea will be given later. 
cD 
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In the case of observers of class I., the light just before it is extinguished at the 

fovea gives the sensation of colour. This is particularly well marked in the green, 

where the faintest light observable with central fixation appears of a dull but very 

saturated green. In the case of observers of class II., on the other hand, as long as 

the stimulus light is red they can distinguish the red colour when the light is visible 

at all, but throughout the rest of the SDectrum the light loses colour a considerable 

time before it is extinguished. These class II. observers have an achromatic interval 

throughout the whole of the spectrum except perhaps in the red. 

It may be remarked, that when AY. attempted to determine his foveal threshold 

values without using the arrangements which have been described above, but 

employing a continuous illumination which was gradually decreased in intensity, his 
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results were very variable, but corresponded roughly to those obtained at about 

2'5 degrees from the fovea though he was under the impression that correct fixation 

was being secured. During the course of these observations, however, he noticed that 

the light sometimes appeared to vanish, and he satisfied himself that this occurred 

whenever he managed to bring the image on the fovea. If, when using the fixation 

spot and shutter for central fixation the annulus is turned till the light has vanished, 

say in the green, if the eye is moved a little bit on one side of the fixation spot and 

the shutter opened, the flash of light seen appears almost blinding. 

In fig. 9 are collected together all the curves for 1'25 degrees from the fovea, and 

it will be noted how in the case of all observers of class I., there is a marked change 

from the values at the fovea, but they approximate much more nearly to those 

VOL. OCXVI.-A. Q 
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obtained by observers of class II. While the threshold values for observers A. and B. 

are definitely lower than any of the others, observer Ar. has at 1'25 degrees threshold 

values higher than those of the majority of class 1. ' 

In figs. 10, 11, and 12 are collected the threshold curves for 2'5, 5, and 10 degrees, 

and it will be seen that in each case there is no distinction between the two classes. 

With regard to the observers having abnormal colour vision, Ar. and It. have 

threshold values which do not differ materially from the values obtained by persons 

with normal colour vision. The red blind observer N. has a markedly higher threshold 

value at the red end of the spectrum, in fact the spectrum employed in the measure¬ 

ments was not sufficiently bright for him to obtain readings beyond SSN 55 (625 /ufx). 

Id the green, blue, and violet, his values for the threshold agree with the normal. 
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The threshold in the red, we are assuming, depends on the cones, and N.’s cone vision 

is defective since he has a shortened spectrum, hence his high threshold values 

at the red end. 

Piper (‘ Zeit. f. Psychol, u. Physiol, d. Sinn.,’ 32, 161, 1904; see also Helmholtz 

‘ Physiol. Optik,’ 3rd edition, vol. 2, 286) found that with the dark adapted eye, and 

with stimuli which approach the threshold, binocular summation occurs, so that when 

a feebly illuminated surface was examined with both eyes it appeared nearly twice as 

bright as when one eye only was used. He also found that the threshold values for 

the two eyes used together were about half the values for either eye used separately. 

It seemed of interest to examine whether this summation efiect would be the 

same for observers of the two classes, and hence W. (class I.) and B. (class II.) made 

Q 2 



110 SIR W. DE W. ABNEY AND PROF. AY. AYATSON ON 

threshold observations using (l) both eyes. (2) the right eye only, and (3) the 

left eye onty. Sets of observations were made both at the fovea and at 5 degrees from 

the fovea. They both found that it was much more difficult to obtain satisfactory 

SSN 

Fig. 13. 

settings when using only one eye. The difficulty appears to be due to not being able 

to keep the accommodation of a single eye so adjusted that the fixation light 

is always in focus, unless so bright a fixation light is' used as to interfere with 

c: 
< 

310 4l0 5l0 610 

SSN 

Fig. 14. 

the extinction settings. The actual annulus readings obtained are plotted in 

tigs. 13, 14, and 15. It will be seen that for W. at 5 degrees from the fovea the 
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readings for the left eye are decidedly lower (a lower annulus reading corresponds to 

a higher threshold value) than for the right eye. Further, that with the two eyes 

together the threshold values agree with those corresponding to the better of the two 

eyes taken alone. At the fovea the threshold values are the same whether both eyes 

are used or either eye separately. In the case of B., figs. 14, 15, the values obtained 

with each eye separately agree with the values obtained with both eyes used 

together. These experiments are at variance with those of Piper, and show that for 

a typical observer of either class and for an object subtending an angle of 34 minutes 

and using momentary stimuli there is no evidence of binocular summation. Whether 

the difference can be accounted for by retinal fatigue, where as in Piper’s experi¬ 

ments the light was kept on continuously, must be left for further experimental 

investigation. 

Another point which has been examined is the question as to the influence of the size 

of the stimulus light on the threshold values. In Table III. and figs. 16a and 16b are 

given the.results obtained by W. using discs of diameters 2'8, 6'33 and 13'0 mm. which 

subtended at the eye angles of 14 and 31 minutes and 1 degree 2 minutes respectively. 

Observations were made both at the fovea and at 5 degrees from the fovea. When 

comparing these results with those given in Table II. it must be observed that owing 

to loss of accommodation during the interval which elapsed between the two sets of 

observations W. had to use spectacles when making these latter measurements. In 

the figure the logarithms of the energy at the threshold have been plotted against 

the logarithm of the diameter of the disc on which the stimulus light fell. 
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Table III. 

Angle subtended 
by disc. V 8'. 34'. 17'. 

SSN. log 
reduction. 

log energy. 
log_ 

reduction. log energy. 
log 

reduction. log energy. 

60 r L012 1-429 1-327 1-744 1-795 2‘212 
55 . 3-873 0-052 2-308 0-487 2-876 1 -055 
50 c5 4-848 2-830 3-333 1-315 2-031 0-013 
45 r* o 4-293 2-089 4-676 2-472 3-521 1-317 
40 =-*—1 4-126 3-724 4-555 2-153 3-388 2-986 
35 § \ 4-198 3-629 4-660 2-091 3-531 2-962 
30 4-424 3-677 4-903 2-156 3-776 1-029 
25 

O 

lO 4-761 3-840 3-241 2-320 2-082 1-161 
20 3-155 2-079 3-677 2-601 2-440 1-364 
15 3 • 505 2-261 2-143 2-899 2-855 1-611 
10 2-165 2-683 2-606 1-124 1-306 1-824 

60 r 2-976 1-393 1-129 1 • 546 P292 1-709 
55 d 2-246 0-425 2-429 0-608 2-574 0-753 
50 

<D 

!>• 2-130 0-112 ' 2-378 0-360 2-565 0-547 
45 2-251 0-047 2-533 0-329 2-788 0-584 
40 <1 2-470 0-068 2-800 0-398 1-064 0-662 
35 

- 
2-920 0-351 1-219 0-650 1-505 0-736 

A good deal of work on the influence of the size of the stimulus surface on the 

threshold has already been published (see Nagel in Helmholtz’s ‘ Physiol. Optik,’ 

3 edit., 2, p. 284). Thus for the dark adapted eye Loeser found that for the fovea the 

threshold varied inversely as the square of the diameter of the circular surface used 

as a stimulus. For peripheral regions of the retina Ftper found that the threshold 

varied inversely as the diameter. One of ns in a previous communication (‘ Phil. 

Trans.’ A, vol. 190, 168, 1897) found that for the fovea and for discs which did not 

subtend a greater angle than 4 degrees the threshold varied inversely as D/'G5 where D is 

the diameter of the stimulus disc or the angle subtended at the eye. If the threshold 

value, T, varies inversely as I)", then on plotting the logarithms of the threshold values 

against the logarithms of D we should obtain a straight line, the tangent of the inclina¬ 

tion of which to the I) axis will be equal to n. In figs. 16a and 16b dotted curves are 

drawn for values of n equal to 1, 1 '65 and 2, that is corresponding to the results obtained 

by Piper, Abney, and Loeser respectively. From figs. 16a and 16b it will be seen that 

the numbers obtained by W. by the method described in this paper give approximately 

straight lines at the fovea and at the red end of the spectrum at 5 degrees from the 

fovea, but depart very appreciably from a straight line throughout the rest of the 

spectrum at 5 degrees. At the fovea the inclination of the lines joining the observed 

points agrees fairly closely with that corresponding to the threshold value varying 

inversely as the diameter. At 5 degrees on the other hand the inclination of the 

lines joining the observed points is approximately that corresponding to the threshold 
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values varying inversely as the square of the diameter. The results are therefore in 

marked contradiction to those obtained by Loeser and Piper. 

3. Luminosity at the Threshold. 

In the preceding section we have considered the threshold values measured in 

terms of the objective energy of the radiation required to produce the sensation of 

light. We have now to consider what are the threshold values measured in terms of 

subjective light. In other words, in place of using the energy curve to give the 

distribution of the radiation in the spectrum, we have to use the luminosity curve, that 

is the curve which gives the relative brightness of the different parts of the spectrum 

considered as light. Now the shape of the normal luminosity curve varies with the 

intensity of the spectrum ; the curve obtained with a bright spectrum when the cones 

are principally, if not exclusively, functionary, differs markedly from that obtained 

with a very feeble spectrum when the rods are alone operative. In the case of 

threshold vision we have to do with rod vision except in the red and for the fovea.1 

values obtained by observers of class I., and hence the luminosity curve to be employed 

to give the relative brightness of the different parts of the spectrum is that obtained 

at extremely low intensities or at any rate where the rods are alone operative. Such 

a curve can be obtained by a person having normal colour vision by the use of a very 

feeble spectrum but the observations are very difficult. Hence it is better to make 

use of the fact that the luminosity curve of a person who has monochromatic colour 

vision corresponds to rod vision only. One of us has determined the luminosity curves 

of three monochromats and we have taken the mean of the three as giving the rod 

luminosity curve. The observations were taken with the arc as a source of light but 

by means of the energy curves given in fig. 3 we have calculated the corresponding 

curve for the Nernst light. The values both for the arc and for the Nernst as light 

sources are given in Table IV. 

Table IV.—Luminosity Curves for Monochromat (Rod Vision). 

SSN. 

Luminosity. 

SSN. 

Luminosity. 

Arc. Nernst. Arc. Nernst. 

52 8-8 14-2 30 42 • 2 37-5 
50 19-2 28-1 28 32-1 27'5 
48 35-5 47-9 26 24-4 20-4 
46 56-4 71-4 24 18-6 15-1 
44 74-5 88-0 22 13-7 11-1 
42 86'1 95-3 20 10-1 8-1 
40 87-8 93-8 18 8-1 6-4 
38 84-8 86-0 16 5'9 4-6 
36 78-8 78-0 14 4-7 3-6 
34 69-3 66-2 12 3-2 1-6 
32 56-5 51 • 5 10 2‘3 
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In the case of fovea! vision for observers of class I. we have to do with cone vision 

and hence the luminosity curve to be employed is that corresponding to a bright 

spectrum. In Table V. are given the values of the luminosity obtained by W. with a 

bright spectrum and with the Nernst light as a source. 

Table V.—Luminosity Curve, Bright Spectrum (Cone Vision) for W. Source of 

Light, Nernst Glower. 

SSN. Luminosity. SSN. Luminosity. 

62 3-0 44 75-0 
60 11-5 42 59-5 
58 27-0 40 42-5 
56 56-0 38 27-5 
54 83-0 36 15-2 
52 94-5 34 8-2 
50 99-5 32 4-7 
48 99-0 30 4-5 
46 90-0 28 4-0 

If we multiply the extinctions (that is the reductions of the various parts of the 

spectrum to give the threshold) by the corresponding luminosities, the products will 

give us numbers which are proportional to the amounts by which the different colours 

of the spectrum must be reduced to give the threshold. This supposes each colour 

before reduction to be equally brightV 

In fig. 17 are given the foveal curves for the observers of class I., the ordinates 

being the product of extinction into cone luminosity. The curves are rather 

irregular, but it must be remembered that in the case of observers of this class the 

foveal observations are very much more difficult to obtain than extrafoveal values. 

If we take the mean of all the observations the product of extinction into luminosit)^ 

is very nearly constant except in the neighbourhood of SSN 40 (527^/x), where there 

is a decided rise. It is, however, to be remarked that this point in the spectrum 

appears to be the most difficult to obtain good central fixation, and W., who has 

had much more experience in making these observations than any of the others, 

does not obtain a high value at this point. On the whole we think we may 

conclude that for class I. at the fovea the threshold values throughout have the 

same fraction of the original brightness ; this original brightness being the same for 

all colours. 

* With class I. before reduction each colour produces an equal sensation by means of cones only with 

foveal fixation or with the rods also for foveal vision with class II., and for extra-foveal vision for both 

classes. 

YOL. CGXYI.-—A. R, 
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In fig. 18 are given the foveal extinctions for the observers of class II. multiplied 

by the rod luminosities. Except in the orange and red, where we have chiefly to do 

with cone vision, the curve for observer B. is a horizontal straight line, showing that 

throughout this region the threshold values correspond to equal brightnesses as far as 

rod vision is concerned. For observer A. the curve rises steadily from the yellow to 

the violet. This rise is probably due to a slight colouration of the lens, which is 

indicated also by other measurements. Owing to this colouration the values assumed 

for the luminosity are too high for A. In the case of An. we seem to have a curve 

intermediate in character between those corresponding to the two classes. It has a 

well-marked maximum at SSN 45. 

At 1‘25 degrees from the fovea the results for the observers of class I. obtained by 

using the rod luminosity curve approximate in the case of three observers to those of 
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class II., fig. 19. In the case of R. and W. there is a marked rise at the violet end 

of the spectrum. Of the observers of class II., A. and B. have nearly horizontal 

curves throughout the greater part of the spectrum, while Ar.’s curve rises 

markedly towards the violet end, here again resembling the values obtained by 

class I. 

•020 

30 40 

SSJY 

■LU-U-iJ 

50 60 

Fig. 19. 

At 2'5 degrees, 5 degrees, and 10 degrees from the fovea, as shown in figs. 20, 21, 

and 22, the results obtained by the two classes resemble one another, and, except at 

the red end of the spectrum, the product of the extinction into the rod luminosity 

is nearly constant. There is in the case of some observers a tendency for the product 

to increase towards the violet, but it must be remembered that the luminosity 

R 2 
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measurements in this region are more uncertain than in the brighter parts of the 

spectrum. Differences in the absorption values of the eye-media are also most likely 

to have the greatest effect in this region. 

. 4. Method of Examining the Distribution of Bods in the Retina. 

The determination of the threshold values for foveal fixation, as described above, 

enables us at once to say whether an observer belongs to class A. or to class B. 

Since, however, it takes a considerable time to obtain a set of observations, as it is 

necessary to go on taking sets till it is quite certain that correct foveal fixation is 

being obtained, examining any number of persons by this method is a very lengthy 

process. Hence we have devised another method which enables one in a few minutes 

to settle to which class an observer belone’s. 
c~) 

By means of a plane mirror, M, fig. 23, to which is imparted an oscillatory motion 

about a vertical axis, the light passing through the slit, C, attached to a slide, AB, 

which is in the plane of the spectrum, is reflected on to a white screen, HJ. By 

means of a diaphragm placed against the first face of the prism train of the colour 



120 SIR W. DE W. ABNEY AND PROF. W. WATSON ON 

patch apparatus, a spot of light having a diameter of 12 mm. is formed on the screen. 

At the middle, K, of the screen are pierced two pinholes, one vertically over the other 

and 1 inch apart. Behind these holes is placed a lamp, L, and a piece of red glass, N. 

These holes provide fixation points for the observer, who is placed at P at a distance 

of 1 metre from the screen. The wheel, G, is driven by an electric motor at such a 

speed that the spot makes one complete to-and-fro vibration in 1'4 seconds, the 

amplitude of the motion being so great that the spot passes completely off the screen 

at each end of its travel. In its passage across the screen the spot passes half-way 

between the pinholes. The slit, C, is opened by means of a micrometer screw so that 

the brightness of the spot of light can be adjusted. If the slit is placed at 

SSN 40 (527/u/u) and the spot is bright, an observer of class I., who keeps his eye 

H 

Fig. 23. 

K 

L 

J 

fixed half-way between the two fixation spots, sees a band of light across the screen 

each time the spot crosses. This band of light appears dark green at the centre and 

a much lighter green and brighter at the sides. As the intensity of the light is 

reduced the centre becomes a darker and duller green while the sides remain bright 

but lose their colour. Finally an intensity is reached when no light at all is seen at 

the centre although the sides are quite bright. It is interesting to notice how very 

well marked is the centre area over which the sensation of light is not perceived, this 

area corresponding of course to the rod-free region of the retina. 

If the same series of changes is repeated with an observer of class II., the results 

obtained are quite different. At fairly high intensities there seems little difference 

between the centre and the sides in colour, though the centre generally seems slightly 



THE THRESHOLD OF VISION FOR DIFFERENT COLOURED LIGHTS 121 

less bright. When the intensity of the light is reduced to such an extent that to an 

observer of class I. there is no sensation of light in the centre, an observer of class II. 

sees a continuous streak of light, the brightness at the centre being little less than 

that at the sides. If the intensity is reduced to about one-twentieth of that 

required for central extinction for class I., the centre also appears dark for class II., 

but the sides then are very faint, in fact the threshold is almost readied throughout. 

If a red (SSN 50, 632/ul/u.) spot of light is used, then for both classes the streak of 

light looks brighter at the centre than at the sides, whatever the intensity. 

The explanation of these results is that with the green light, which stimulates 

both the rods and the cones if sufficiently bright, when the intensity is reduced below 

the cone threshold in the case of class I. (where there are no rods at the fovea), no 

sensation is produced in this region. In the periphery, where there are rods, the 

stimulus is sufficient to cause the sensation of light. In the case of class II., since 

there are rods at the fovea, the stimulus even when below the cone threshold is 

sufficient to cause a sensation of light by means of these rods. With a red light, 

since this colour is unable to stimulate the rods, we have only to do with cone 

vision, and the results obtained indicate that the cone sensation is a maximum at 

the fovea for observers of both classes. By means of this apparatus we have tested 

ten persons, and as a result find that eight of them belong to class I. and two to 

class II. 

This method of examining, in which there is no difficulty in obtaining correct 

fixation, may perhaps be of considerable assistance to ophthalmologists when examining 

a central scotoma. 

It is rather curious that when one of us (A.) made the investigation as to the 

sensitiveness of the retina described in a previous communication (‘ Phil. Trans.,' 

A, vol. 190, p. 155, 1897) he confirmed his results by means of those obtained by B., 

and as they agreed, he concluded that the results obtained applied to all normal 

eyes. We now know that both A. and B. belong to a class which seems to form only 

a small proportion of normal eyes. 

There has been some considerable discussion whether the secondary image or 

Bidwell’s ghost which is seen to follow a moving spot of light when the eye is kept 

stationary occurs at the fovea. Using the arrangement described above, but causing 

the spot of light to travel much more closely, we have examined this question in the 

case of a typical observer of each class. Using a green stimulus light the ghost is 

very well marked, and to W., an observer of the first class, the ghost always appears 

to jump the fovea. In the case of an observer of the second class, B., the ghost is 

seen to follow the primary right across the field, no interruption at the fovea taking- 

place. It would thus appear that the rods and not the cones are involved in the 

production of this secondary image. * 

* [When this was in print we were not aware of McDougal’s experiments on the Bidwell ghost. His 

paper should be examined in connection with the results given in the above paragraph.—October 20,1915.] 
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5. Visibility of Radiation. 

Having determined the energy distribution for the two sources of light we have 

employed, it seemed of interest to obtain the visibility that is the quotient of the 

luminosity by the energy throughout the spectrum. We have done this in the case 

of the observer W. (who has no rods at his fovea), taking care to use, when making 

the luminosity measurements, a photometer field of such a size that the image formed 

on the retina was confined to the fovea. The luminosity values obtained are given 

in Table V. and the corresponding visibilities are plotted in fig. 24, the values 

obtained with the arc light being shown by the continuous line and those with 

the Nernst by the dotted curve. The two curves are in very fair agreement 

.to 

20 30 40 

SSN 

Fig. 24. 

50 60 

except on the blue side of the maximum, a region of the spectrum where it is always 

difficult to make concordant measurements of luminosity by the equality of 

brightness method which was employed in this case. These results, together with 

those obtained by previous workers, are shown in fig. 25, where the mean of the values 

obtained with the arc and NERNST instruments are shown by the full line curve. 

Nutting* and Ives| both used the flicker method of measuring the luminosity. 

Nutting measured the energy distribution directly, while Ives calculated it from the 

energy distribution in the source as obtained by other observers and the measured 

* ‘ Phil. Mag.,’ p. 304, Feb., 1915. 

t ‘Phil. Mag.,’ p. 859, Dec., 1912. 
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dispersion and absorption of his instrument. Koenig’s* values (riven are those 

recalculated by Nutting, and in this case also the energy distribution was not directly! 

measured. Houston's! values are the mean of those obtained by a number of 

observers and the energy was again calculated. It is fairly evident that in this case 

some serious error has been made in determining the energy distribution. At first 

sight it looks as if the intensity of the spectrum used by Houston was so low 

that he was dealing mainly with rod vision. That this is not the true explanation is 

shown by the fact that he also publishes results obtained with a much less intense 

spectrum, and the maximum he obtains for this rod visibility curve is as much below 

the value obtained by other observers for the rod curve as is the maximum he obtains 

for the bright or cone visibility curve. § Our curve lies considerably below those 

obtained by other observers in the blue and violet. This is probably almost entirely 

due to the fact that we are dealing with pure' cone vision, while other observers, who 

apparently used a much larger photometric field, were probably dealing with a mixed 

* ‘ Bull. Bureau of Standards,’ 7, 238, 1911. 

t ‘Phil. Mag.,’ p. 715, May, 1913. 

+ The calculations of energy can only be considered as close appi-oximations of the radiation from 

peifectly black bodies. If not black deviation from absolute measurement of energy is to be expected. 

§ Displaced from the mean of all the other observers. 

VOL. CCXVI.—A. s 
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rod and cone sensation which would increase the luminosity values in the blue and 

violet. 

Using the luminosity values given in Table IV. for rod vision, as deduced from 

experiments on monochromats, we have calculated the corresponding visibility curve 

and it is shown in fig. 25. 

6. Relative Sensitiveness of the Foveal and Parafoveal Regions. 

Observer W., with a rodless fovea, made a series of measurements of the relative 

intensities of two lights, one of which falls on the fovea and the other on the 

parafoveal region, when the sensations produced are the same, that is when the two 

lights appear equally bright. In this way we compare the sensitiveness of a part 

of the retina where there are only cones with that of a region where there are both 

rods and cones, and by making this comparison at different intensities of the stimulus 

light we obtain an insight as to the manner in which the relative sensitiveness of the 

rods and cones varies with the intensity. 

The arrangement employed is shown diagrammatically in fig. 26. The light of the 

required colour passes through a slit, A, attached to the slide of the spectrum 

apparatus, and a lens, B, is so adjusted as to give an image of the first face of the 

prism train on the screen, EF. The light passes through a sheet of plane glass, C, 

placed at 45 degrees, and the part of the light reflected from this glass is again 

reflected from a silvered mirror, D, on to the screen. This screen consists of a central 

white disc, F, of such a size that its radius subtends an angle of 43 minutes at the 

observer’s eye and a circular annulus, E, of which the radius of the inner edge subtends 

an angle of 2 degrees at the observer’s eye and that of the outer edge 3 degrees. The 

space between the central disc and the annulus is painted dead black. A diaphragm, 

G, is so arranged that the light which passes straight through the glass plate, C, only 

illuminates the disc, F ; while an opaque disc, H, screens this central disc from the light, 

which has been reflected from the mirrors C and D, so that this light only illuminates 

the annulus, E. A set of adjustable sectors, I, placed in the path of the light which 
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illuminates the disc, allows of the intensity of the illumination being adjusted. By 

removing H and placing a rod so as to form a Bumford photometer, the intensity of 

the beam which goes straight through and is doubly reflected, respectively, can be 

compared. The experiment consists in adjusting the sectors so that when the eyes 

are kept fixed on the centre of the disc the disc and the annulus appear equally 

bright. Settings were taken alternately starting with the centre too bright and 

then too feeble. Observations were made throughout the spectrum with different 

intensities.* 

Two series of measurements were made, one with the eye thoroughly dark adapted, 

the annulus being surrounded with black velvet and all stray light screened off. In 

the other set the eye was light adapted, a sheet of white blotting paper surrounding 

the annulus, and was illuminated by the white light of the arc. A screen was so 

placed that none of this white light fell on the annulus or disc. The intensity of the 

white light on the background was 1'5 lux, and was adjusted so that when a red and 

a blue light were compared by a person who has rods at the fovea the relative 

intensity of the two lights did not appear to alter, as the intensity of both was 

reduced in the same proportion, that is till the so-called Purkinje effect vanished. 

A series of measurements were first made using a constant slit width throughout 

the spectrum by both W. and B., and the results are given in Table VI. and 

Table VI. 

Colour. 
SSN. 

Ratio of central to parafoveal 
illumination for equal brightness. 

Dark adapted eye. 

W. B. 

58-7 658 1-14 1-05 
56-0 632 1-17 
53-3 609 1-23 1-06 
50-8 589 1-29 
48-6 576 1-15 1-16 
45-4 556 1-32 
42-8 541 1-38 1-10 
40-1 527 1-54 
37-6 514 1-70 1-15 
35-0 503 2-42 
32-2 493 4 63 1-12 
27-0 474 9-53 1 -32 
21-8 457 • 13-6 1-24 
16-5 442 19-6 1-34 
11-2 427 23-9 1-41 
5-9 415 27-0 1-49 
0-7 403 27'0 1*94 

1 

* The slit, A, could be varied in width, the actual intensity when the slit was placed at the D line being 

determined by comparison with a Hefner lamp. 

s 2 
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fig. 27. It will be observed that the two observers, one of whom belongs to class I. and 

the other to class II., get entirely different results. In the case of B., the ratio of the 

foveal to the parafoveal intensities for equal brightness does not differ greatly from 

unity and is very nearly constant throughout the spectrum, showing that the sensitive¬ 

ness of the retina at the fovea and at 2'5 degrees from the fovea is nearly the same, 

a result which is confirmed by the threshold measurements. In the case of W. there 

is a very marked increase in the sensitiveness at 2‘5 degrees as we go towards the 

violet, so that at SSN 5'9 (400 /xm) the central illumination has to be 27 times the 

S SJV 

Fig. 27. 

brightness of the peripheral for the brightness to appear the same. Observer A. 

obtains similar results to those obtained by B., except that his ratio is slightly higher 

at SSN 30 ; the maximum value of the ratio is, however, only 2. B. also made 

observations using a lens to view the illuminated surfaces which caused the image of 

the edge of the annulus to fall at 6'5 degrees from the fovea. The ratio was again 

practically constant, the maximum value being 1'29 at SSN 6. 

In the above series only a single intensity was used for each colour, and W. then 

made sets of observations with different intensities in order to study the manner 

in which the relative sensitiveness varies with intensity. The results obtained are 
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contained in Table VII. With the light adapted eye it was found that the ratio was 

independent of the intensity so only the mean values are entered in the table. As the 

intensity of the illumination is increased from a very low value, the ratio of the central 

to the parafoveal illumination for equal brightness at first decreases rapidly, but as the 

intensity increases the change becomes slower and slower. Finally, for the higher 

illuminations, the ratio becomes practically constant and approximates to the value 

obtained with the light adapted eye. 

Table VII. 

Colour. 
Intensity of peripteral illu- Ratio of central to peripheral 

mi nation in terms of— illumination for equal brightness. 

SSN. /*/*■ Luminosity (lux). Dark adapted. Light adapted. 

53-3 609 0-027 1-93 - 

o-io 1-67 
0-20 1-70 
0-40 1-42 >1-07 
0-79 1-47 
1-85 1-17 
2-28 1-09 - 

48-6 576 0-037 2-98 
0-14 2-20 

- 0-26 1-83 
0-54 1-42 U-99 
1-07 1-38 
2-51 0-96 
3-08 1-02 

42-8 541 0-11 2-64 
0-21 2-00 
0-42 1-58 
0-85 1-41 L 1*04 
1-98 1-24 
2-44 1-29 
4-94 1-21 

37-6 514 0-049 4-05 1 

o-io 2-82 
0-20 2-28 
0-38 1-74 
0-78 1-44 f 1 • 13 
0-90 1-52 
1-11 1-39 
1-81 1-22 
2-24 1-33 - 

I I 1 
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Table VII. (continued). 

. 

Intensity of peripheral illu- Ratio of central to peripheral 
mination in terms of— illumination for equal brightness. 

SSN. /T- Luminosity (lux). Dark adapted. Light adapted. 

32*2 493 0-012 5-35 
0-024 5-44 
0-05 3-81 
o-io 
0-21 

3-12 
2-39 

.1-45 

0-46 2-07 
0-58 2-06 
0-93 1-85 

- 

21-8 457 0-0013 9-30 
0-005 13-0 
o-oio 7-11 
0-022 3-76 
0-030 3-88 
0-041 2-80 -1-51 
0-060 2-33 
0-093 2-13 
0-13 2-06 
0-20 1-95 
0-25 1-87 

- 
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Preface. 

Part II. of the present paper was written, very much in the form in which it is 

now presented, in the summer of 1913, and began with the remark in §11, which 

appears to disprove a statement made by Poincare in regard to the convergence of 

an astronomical series. It was laid aside partly because a good deal of the work is 

only of the nature of elementary algebra, partly because the matrix notation 

employed does not seem to find favour in its application to differential equations. 

Various circumstances have, however, led me to take up the matter again, and my 

original conviction that the method of Part II. is of importance has been strengthened 

by comparing it with the less formal methods which, for the sake of introducing the 

subject, I have followed in Part I. I hope, therefore, that the following exposition 

may be thought worth while. Part III. has only the value of a concluding remark. 

The table of contents above may serve to give an idea of the scope and arrangement 

of the paper. 

PART I. 

§ 1. Consider a linear differential equation 

U^+Y^+WX = 0, 
CLt QjT 

where U, V, W are power series in a small quantity, A, of the forms 

U = u -F Aiq + \’'u2 T" • • • , 

V = v + Xvv + A\’2 + ..., 

AV = \w1 + \2iv2 +..., 

in which each of ur, vr, wr is a linear function of 

r, f4-;, 

l denoting e\ Thus each of u2n, v2n, iv2n will contain a term independent of we 

speak of these as the absolute terms. It is important that AV contains no term 

in A"; and it is assumed that the quantity v/u, which is independent of £, is not a 

positive or negative integer, and that u, v are not both zero. 

AVe prove that if the absolute terms in AV, that is the absolute terms in 

w2, wi} w6, 

be suitably determined, the differential equation possesses a solution of the form 

X — l + x<pi + A“02 t • • •, 
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wherein 0r is a linear function of £r, £r~2, £r~4, £4-r, £2~r, £~r, and this is a periodic 

solution. Its period is 2iri; we can, however, if we wish, express the same result 

with a period 2?r by writing t = it. 
For the substitution of the assumed form for X requires the identity 

(u + 2AX) 2\V;,n + (v + 2AX) 2\yB + 2An«y (1 + 2An0„) = 0, 

which, equating the coefficient of A” to zero, will be true if 

w<p"n + u\<k>nn-\ + • • • + Un-lty" 1 

+ V<p' n + Vl<p'n-1 + • • • + Vn_-l(p\ 

+ Wl<Pn-\ + W2(pn-2 + ••• +Wn-l(Pl+Wn = 0- 

In particular for n = 1 
U(p'\ + V({/1 + iv1 = 0. 

If herein we suppose 

0i = Ajb +A_j(, , w1 = cX+c_X , 

u, v, c1} c_! being given constants, we obtain 

^ (A^+A_X-1)+v (Ax^—A_1^_1)+cX+c_XT'1 — 0; 

which is satisfied by 

Ax = 
Cl 

u+v’ 
A_! 

C-l 

-w —v ’ 

For n = 2 the condition is 

u<f> f2 -\-v<pr % + ?q0\ + i\<p\ + = 0. 
"Writings 

Ui = «if+a_X_15 iq = b^+b_^-\ u\ = G^+c_^-\ w2 = c2£2 + c_2£-2 + C2, 

and assuming a form 

02 = A2^2 + A_2^_2, 

the condition becomes 

4u (AA2 +A_2r2) + 2v (A2f2-A_X-2) 

+ (cqf+a&_if _1) (AX+A_X_1) + (&if+&_if“1) (AX—A_X-1) 

+ (ci£+c-i£ *) (AX+A_X_1)+c2<y + c_X “ + C2 = 0 ; 

equating the coefficients of £2, f-2, £° to zero, we obtain 

(4:U+2v) A2 = — rtjAj — ZqAi—c^—c2, 

(4w—2v) A_2 = —a_iA_1 + 6_1A_1—c_1A_1—c_2, 

C2 = —WiA.i—a.iAi + ^iA.! —h.iAi—CjA,!—c.jAi, 
t 2 
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which, as v/u is not 2 or —2, determine A2, A_2, and C2, the last being expressible by 

means of the given coefficients of u, v, u1} v1} ivv 

Proceeding similarly with the general value of n, we at once reach the conclusion 

stated, the absolute term in wn being determined in terms of the coefficients in 

U> Ul> Un-1> A As • • ■ 5 Ai-15 Wlt u,2> • • • 5 Wn-V 

§ 2. Now consider an equation 

A^+2pA+Cx 
(It (It 

o, 

where, wTith f = eT, A, B, C have the forms 

A = «0 + A (cq£+a_X_1) + A" (w2(,“ + a_2<, " + <%>) + ..., 

b = &0+A(^+6_1ri)+x2(6/2+6:2r2+u+...5 

C = c0 + A (cj^+ c_N_1) + A2 (c2£2 + c_2£_2 + c20) + • • • j 

which are periodic functions of r, with period ri, capable of being arranged as 

power series in a parameter A, the coefficient of Ar being a linear function of 

r, r-2,..., r-b rr. 
In accordance with the well-known theory of linear differential equations with 

periodic coefficients, we substitute 
x = eKTX, 

where k is a constant, and so obtain a differential equation 

AX"+ 2 (atA + B) X'+ (A/c2 + 2B/c+C) X - 0, 

which, when k is properly chosen, is to be satisfied by a periodic function X. That 

this is possible follows at once from § 1, as we now explain. 

First we can draw some inference as to the form of k. For compare the original 

differential equation in x with the equation obtained from it by changing the sign of 

A in each of the series A, B, C. It is clear that the new differential equation may 

equally be obtained from the original equation by change of t into r + 7r?’, which 

changes f into — g; this latter change, however, only multiplies the factor eKT by the 

constant e,7r<; the factors eKT appropriate to the two independent solutions of the new 

differential equation are thus the same, in their aggregate, as the factors for the 

original equation. Thus the change of the sign of A changes the two factors eKT 

appropriate to the two independent solutions of the original differential equation 

among themselves, either by leaving both unaltered or by interchanging them. 

Assuming that k is capable of expression as a power series in A, 

k = «r0 + /qA + /c2A2 + ..., 
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the case in which each k is unaltered by change of the sign of A is the case in which 

only even powers enter in this series. The case in which the two values of k are 

interchanged by change of the sign of A may arise when the differential equation is 

such that for A = 0 the two values of k are equal or differ by an integer ; in this case 

eKT/eKT is a periodic function for A = 0, and the factors eK'r, eKT do not individualise the 

functions with which they are associated. 

In the present case, the equation reduces when A = 0, to 

d2x , o7 dx , A 
J 2 "b 7 "h 0)*^ — 0, 
dr~ dT 

which, if a0 is not zero, has the two solutions eaT, eaT, where o-, a have the values 

[-b0±(b02-a0c0Y]/a0. 

Thus if we suppose not only that a0 is other than zero, but also that 

2 (/7u2-«(JC0)'V«o 

is not zero or a positive or negative integer, we can assume 

Then putting 
K — IT + K2AJ + K.tA4 + . . . . 

X = 1 + \(f>i + A"02 + • • • , 

where is a linear function of £r, .... £2-r, £~r, the differential equation for X 

can be compared with that of § 1. In the present case there is an unknown 

quantity k entering into the coefficient A/c + B of dX/dr, but it will be seen that in 

the equations obtained by taking the successive powers of A, each unknown coefficient 

in k in this A/c + B is determined at an earlier stage as entering in the coefficient 

A/c2+2B/c+C, and so enters as a known coefficient. We have 

A/c+B = [a0 + A (cq^+a.^ 1) + A“ (cqA + ^-2^ “ + C£20) +...] [ct+k2A“ +...] 

+ &U+A (&i£+ ') + A2 (h2£‘ + b_2£““ + 52u) + ... 

— a0<x + 60 +A [<T (ctjC, + 1) + &X+ 

+ A- [<7 (cs2^' + ct_2£ + ck20) T <^0^2 + b2<," + b^2% " + ^20] 

+ ..., 
and similarly, ♦ 

A/c” + 2B/c + C — c^qit” + 2&0cr + Cq 

+ A [<r“ (cq£ + 1) + 2o-(&1£+-&_1£_1) + c1f+c_1£ 

+ A“ [o-' (cq£2 + a_2£~"'+'a20) + 2<r (b2£~+ b_2£~~ + b20)+ 2k2 (cQt + b(l) 
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the absolute term in the coefficient of X4 in this being 

2Ki ((t0O" &0) “t + 2iQ,20K2cr “t + 2bmK2 + 2&40(X + C4Q. 

Thus, as in § 1, we first put 
a0(r2+2b0or + c0 = 0, 

assuming, as in § 1 it was assumed that vju is not an integer, that 

2 (a0<r + b0)/a0, or 2 («0c0 - bfffa0, 

is not zero or integral; then the absolute term in the coefficient of X2 determines 

*2 («o°' + ^u)> and hence k2, and the absolute term in the coefficient of X4 similarly 

determines k4. 

The excepted case in which k contains odd as well as even powers of X we may 

leave aside at present. 

§3. We may apply the preceding to the much discussed* equation 

d2x 

When X = 0 we have the two factors eiai, and the general case is that in 

which e2,M has not the period, 2tt, of the coefficients in the differential equation, 

that is, when 2<r is not an integer. First assume this to be so. Then writing 

we obtain 
x = ff*eX 

X" + 24X' + (<r2—/c2 + 2\lc1 cos B + 2\% cos 20+ ...) X = 0. 

Herein assume 
K = <7 + AToX"' + /C4X4 + . . . , X — 1 + \<p\ + X“02 + • • • ) 

* For this differential equation the following list of references may be useful, though it is probably far 

from complete:—Mathieu, ‘Louville’s J.,’ XIII. (1868), p. 137; Hill, ‘Coll. Math. Works,’I., p. 255 

(‘Acta Math.,’ VIII. (1886)); Adams, ‘Coll. Scientific Papers,’ I., p. 186, II., pjx 65, 86; Tisserand, 

‘ Mec. CM.,’ t. IIP, Ch. I. ; Poincare, ‘ Meth. Nouv.,’ t. II., Ch. XVII. ; Forsyth, ‘Linear Differential 

Equations’ (1902), p. 431; Rayleigh, ‘Scientific Papers,’ vol. III. (1902), p- 1; Lindehann, ‘Math. 

Annal.,’ Bd. XXII. (1883), p. 117; LlNDSTEDT, ‘ Astr. Nachr.,’ 2503 (1883); Lindstedt, ‘ Memoires 

de l’Acad. de St. Petersbourg,’ t. XXI., No. 4; Bruns, ‘Astr. Nachr.,’ ^533, 2553 (1883); 

Callandreau, ‘Astr. Nachr.,’ 2547 (1883); Callandreau, ‘Ann. Observ.,’ Paris, XXII. (1896); 

Tisserand, ‘Bull. Astr.,’ t. IX. (1892); Stieltjes, ‘Astr. Nachr.,’ 2602, 2609 (1884); ILarzer, 

‘Astr. Nachr.,’ 2850, 2851 (1888); Moulton and Macmillan, ‘ Amer. J.,’ XXXIII. (1911); 

Moulton, ‘Rendic. Palermo,’ XXXII. (1911); Moulton, ‘Math. Ann.,’LXXIII. (1913); Whittaker, 

‘.Cambridge Congress’ (1912), L, p. 366 ; Whittaker, Young and Milne, ‘Edinburgh Math. Soc.,’ 

XXXII., 1913-14; Ince, ‘Monthly Not.,’ Roy. Astr. Soc., LXXV. (1915); Poincare, ‘Bull. Astr.,’ 

XVII. (1900). 
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where </>r is an integral polynomial of order r in £ and £-1, the quantity eie being 

denoted by £ Then we have 

2A>"„ + 2i {a + k2A2 + ...) 2Ay» 

+ [ — 2<x/c2A“ — (2cta4 + /cy) A1 + ... + 2A/q cos 0 + ...] []l + 2An<pn\ — 0. 

The terms in A give 
<p"1 + 2ia<p'1 + k1 (£+f-1) = 0, 

which, if we denote (<x + r)2 — a2 or r(2o- + r) by ur, so that the result of substituting 

for (f> in <p" + 2ia(f>' is — ur£r, leads to 

The terms in A2 give 

(f>i — kA— + 
\u. 

0^2 + 2ia<pr 2 + kx (f+ f "_1) (pi + k2 (<U + £ 2) —2cr/c2 — 0, 

which, if we write 

leads to 

and 

02 — A2£"+A_2£ 

A2 = lfi!+U), A_2 = — R+AA) 
w2\ Itj/ W_s\ W_i/ 

2cr\Ul U_J <r(4<x~ —l) 

By the terms in A3, A4, we similarly find the coefficients in 

and also 

*4 

03 — A3£3+A_3£ ,j + B1^ + B_1^ 1, 

A = A4£4 + A_4£;4 + B2£2+B_2£-2, 

6O0-4—35o-2+ 2 74 3 , „ 1 /2 

4cr3(a-2-l)(4«x2-l)3 1 +2a(a-2-l)(4a-2-l) 1 2 4a-(a-2-l) 2’ 

If we change the notation, writing 0 = 2t, 2or = n, so that the differential equation 

becomes 

dfa 

dt 
j + [,h2 + 8AA;1 cos 2t+8\2k2 cos 41+ ...~\x = 0 

and 

we have 

k = \n 

£ — e2lt, x = e2wtX, 

2k2\2 , „ 15A1—35w2 + 8 7,4i 
1 A -i A . \ . . /Ci + 

12 k2k2 2k2 

n(ri2— l) ' l w? {n2—4) {n2— l)3 1 n {n2—4) (n2— l) n{n2—4) 

It is clear that k is essentially real so long as this series converges. 
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As an immediate application take the equation in Brown’s ‘ Lunar Theory,’ p. 107, 

d2x 

dt 

where 

Put 

j + n2x {l + fm2 —(3m2 + J^m3 + —|^m4) cos cos 4£} = 0, 

^ = (n—n') t + e—e', m = n’ln. 

m __ __h— m = _dh—^ n dt = (l +mx) d£; 
1 —m n—n 1 +ml 

then the equation becomes 

d2x 

d, 
hh + ic {1 +2m1+fm12— 3V^i4+wh3(3 + ^9-w1+i31m12) cos 2^+%%q4 cos 4£} = 0, 

which is of the form above, £ replacing t. We may then take 

A = , n2 — 1+ 2m1 + fm12—3%mx4, &x = 3 + 1^-m1 + --f-m2, k2 — 33. 
8 

Here m1 is a small quantity and 

A2 m, 

n2— 1 64 (2mx + ...) 12'8 

is of the order mx3, while similarly A4/(?i2—l)'; is of the order mx5. Also 

n = (1 + mx) {1 + f mx2 (1 — 2m1 + 3m2) — 

= (1 + m,) (1 + fm2—| wxs + -y^-wii4). 
Thus 

ij-, 4A2A2 1 
2 1 n2(n2—1)1 (n2-l)j 

= \ (1 + m}) (1 + f mx2 - +Hibb4), 

which is easily seen to agree with the result given by Brown, or by Adams, ‘ Coll. 

Works,’ I., p. 187, when we take account of the fact that 

2ug — 2Ik (n—n') t — 2A 
n—n 

n 
nt, 

so that, in terms of the quantity denoted by g, 

k = ^(l+mjg. 

This example is chiefly useful here as calling attention to the fact that n2, while 

not exactly equal to 1, is near to it, and consequently the factor \/(n2— l) is only 

small of the first order in mv The same weakness occurs in the terms in £_1, ..., in 

the solution. 
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§4. In the equation considered by Hill (‘Coll. Works,’ I., p. 268) the ratio 

4&iA/( n2— l) is about (2785) \ and there is a term slightly greater than 4&A (2785)_r 

arising in the terms in Ar+1 in the series for k, in which 4&A is about O'5704 ; and 

the series fails absolutely in cases in which n is an integer. Then the assumption 

that k is a power series in A2, and the terms in X which are independent of A, must 

be modified, for reasons above given. The series when n is an integer has been 

considered by Tisserand, ‘Bull. Astr.,’ IX., 1892; modifying his procedure, so as to 

include the case when n is near to 1 as well as that in which n — 1, we may write, in 

accordance with the suggestion of such examples as that above quoted, 

w2 = 1 + 4Ahx + 4A2h2 +..., 

and then, denoting e2lrt + e 2lTt by wr, consider the equation 

+ [l +4A (h1 + k1w1) +4A2(h2 + k2w2) +...]x = 0. 

By the changes 
t — 2 it, f = eT, 

dx -ix = e-i(1+2?D[U—V£], TT = e-i(i+3s)t[U + y^, 
(JLl 

the differential equation may be replaced by the pair 

where 

€L_?U = -^(tr-Vf), = -*(U£-'-V), 

«>, = r+rr, 

<p — A (/?] + kiWi) + A2 (A'2 + k2w2) + .... 
Assuming here 

q — \ql + \2q2Jt- ..., 

IT = 1 + AW) + A2w2 + ..., "V — B (l + \v1 + \2v3+...), 

in which B is a constant, and ur, v, are polynomials in £ and £_1, we find, equating 

coefficients of like powers of A, 

dur tt 

—i—tgywr_1 + (72wr-2+ ••• + QV — Hr, 
(XT 

. dl' TT 
— -j— + guV-i + q2vr_ 2 + • •. + qr = Xr, 

in which 

Hr = (/q + k{wk) (wr_x-(,Bvr_1) + (h2+k2w2) (ur_a—£Bvr_a) + .,. + {hr+krwr) (1 -£B), 

Kr = f^B-lHr. 
VOL. CCXVI.-A. U 
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In these equations, as ur, vs are to be polynomials in £, £-1, the absolute terms, 

those involving £°, must vanish. For r — 1 this gives 

h1 — q1 = JcJS, h1 + q1 — ^B-1. 

We thus write, using hyperbolic functions, 

/q = klCha, q1 — kyshct, B = e-a. 

With these we find at once by integration the values of tq, vu save for the absolute 

terms in these, which we denote by P^ Qx respectively. The conditions for these are 

to be found by considering the absolute terms in the equations for r = 2 ; and so on 

continually. In general, when we have found 

Mj, Vi, U2, V2, •••, Ur-li ^r-15 

and have found ur, vr, save for their absolute terms, Pr, Qr, we find, on taking the 

absolute terms in the equations which involve dur+1/dr and dvr+1/dT, and adding and 

subtracting these terms, that the two quantities 

Jcysha (Pr-Qr)-hr+1, kychu (Pr-Qr)-gr+i 

are thereby expressed in terms of known quantities. It is at once seen that there 

would be no loss of generality in putting P1} P2, P3, ... all zero. Carrying out the 

work, and writing Mr for Pr —Qr, we obtain 

q = k1sha.\ + (M.1k1cha.—k2sh2oi)\2 

+ {|-M12^1ea—2M.1k2ch2a. + k13sha (k>ch2a—^) + k1k2shu. + kxchcx. (M2 —MAi)} A3+ ..., 

where 
/q = kxcha, 

h2 — M.1k1shot—^k12ch2a., 

h3 — ^M.2kxea—M1k2sh2a + kxchcn (2 sh2a—\) + kjc2cha + kysha. (M2—MjPi)- 

Also 

—ixel(1+2q)t = 1 — e"t+XWj + X2W2+ ... 
in which 

Wi = _1 + Px — kxsha. + (—?! + Mi — kjsha.) e~a£—^k1e~a£2, 

w2 = K-2(^+R2)+ri[iPA-fe-‘+^s(i«",-*A«)] 

+ P2—P xkxsha—M -Jc^cha. + k2sha (cha+ea) 

— [P2—Ma + P^sAa + M^e-0—k2sha. (c/ia + e_a)] 

+1 [ ■-l-PA + JMA + \k2ea - k 2 (sha + iea)] 

-We-a(k2 + W)' 
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If from these formulse we determine Mx and M2 — in terms of h2 and h3 we 

find for g, 

q = kvsha\ + Hoctha. A2 

3r H23 2kjl2ch2a h3cha — k-ik2—^k2(2sh2a — l)~\ 

L 2 klSh3a sha sha _| + *"’ 
where 

H2 = h2—bk2(2sh2a—l). 

This formulae is apparently unsatisfactory when sha is small, or n2— 1 nearly equal 

to 4A/q. In fact, the series is of the form 

a+ — A + 
2 a 

±ca2-b2 

8 a3 

2 , Sa*d— ici2bc + b3 3 
A + 

16a5 
A5 + 

whose square has a form in which we can put a = 0, On squaring, we have 

q2 = (h2-k2)\2+2h1K2\3+\i(K22-±h2K2+2h1hs-2k2k2-h2k2+W)+.-., 

wherein 

Ho = h2-h2 + W, 

and this form is appropriate when a = 0 or hY — kx. In particular, when 

h2 = h3 — ... = 0, but h1 is not zero, this gives 
T 

q2 = {h2-k2) \2+h1{3k2-2h12)\3+[5 {h2 -k2)2- - 2k 2k^ A4+..., 

a formula reproducing the former if /q + h2X + h3X2 be put for hx. It will be seen in 

Part II. of this paper why the form of q2 is comparatively so simple. 

Brief reference may be made to another way in which we may use the foregoing 

equations, regarding hu h2, h3, ... not as given constants but as quantities to be 

determined to simplify the result; this has been adopted by Prof. W hittaker 

(‘ Proc. Math. Soc.,’ Edinburgh, XXXII., 1913-14) who chooses as his condition that 

no terms in £°, f1 shall occur in Wu W2, ..., in the expression for x. This can be 

secured by taking 

Px = kxsha, Mj = 2kxsha, P2 = 0, Q2 = 0, .... 

From our present point of view a more natural procedure is to take 

Pi = 0 = Qx = P2 = Q2 =_ Then we obtain 

n2 — l+Xk1ch/3—^\2k12ch2^+\3[k13ch^(2sh2^—^) + k1k2chl3]+..., 

where we have written /3 in place of a, as this argument is now supposed to be 

determined, from this equation, corresponding to a given value of n2. When (3 is so 

determined, q is given by 

q = k^Xshfi — k2X2sh2(3 + A3 [Jcxshf3 (6ch2/3—hr) + k^sh/3] + ..., 

u 2 
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an equation which does not contain sh/3 in its denominator. With a view to the 

comparison of this method with the two others given in the present paper we 

consider two examples. First, for the equation 

d2x 

dt2 
+ [l + 4A&1wl4" 4A k%w2-f-...J x — 0, 

for which n2 is actually unity, we should determine [3 so that 

0 = kxchj3—^k12ch2/3 + kxch/3 (2sh2/3—+klk2ch(3+..., 

where we have replaced A by 1. This gives approximately 

ch/3 — —|A(l + %k2—k2), sh/3 - i(l—^k2), 
and hence 

q = ikx (l — ^-k2 + k2 + ...), 

while the value for j3, substituted for a, gives the series for x. We may remark that 

for the equation 

-y-f + (l + 8kx cos 21) x = 0, 
C1/1/ 

Tisserand (‘ Bull. Astr.,’ IX., 1892, p. 102) finds 

2'. 3 

As a further example take 

d2x 

dt2 
+ a;[l + 4^1(l + ^4)+4Fw;2+...] = 0, 

which, as will appear, is an interesting equation. Then (3 is to be found from 

A = k1ch/3—^k12ch2^ + k1sch/3(2sh2/3—^)+k1k2ch/3+..., 
so that 

and hence 

ch[3 — 1 +-gFj + — 3,kxk2 +..., 

sA/3 = (*,)*()+¥*,-|+ ■••), 

q = (k)HK-U‘-h+-)- 

In both these examples the value found for q follows at once from the general 

formula above given for q2, of which a further deduction is found below in Part II. 

In the last example the value found for /3 gives a solution for x in a series involving 

(A)"- It will be seen in Part II. that when x involves (A)% if is in a very simple 

way, and the case seems better treated as there explained. The occurrence of (A)* in 
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the value of q, in certain cases, is a particular case of Poincare’s theorem, ‘ Mhth. 

Nouv.,’ I., § 79, p 219. The phenomenon presents itself, however, as a consequence 

of the use of elliptic functions in Tisserand’s theory of the small planets; see 

Tisserand, ‘ Mec. Cel.,’ IV., p. 426 (or ‘ Bull. Astr.,’ IV.). 

§ 5. A very important question in regard to the differential equation under 

discussion is whether q is real or not, since upon this depends the conventional 

stability of the secondary oscillation determined by the differential equation. We 

have remarked above (§ 3) that when n is not an integer, and JcxA, k2\2, ... are small 

enough to render the series there obtained convergent, the value of q is necessarily 

real. The cases in which n is an integer and k2 — 0 = ks= ... have been discussed 

by Tisserand, ‘ Bull. Astr.,’ IX., 1892, who obtains the result that the motion is 

unstable for n — 1 or n = 2, that is for the equations 

(~- + [l + 4A&1w1] x — 0, <~ + [4 + 4A^1^1] x = 0, 

when A is small enough, but stable for greater integer values of n. The formula for 

q3, given in the earlier part of § 4 preceding, shows that for cases in which 

the motion is stable provided 

n2 = 1 + 4/qA 

(hJkSa> 1, 

the values of c/ta and shot, being then both real. It shows further that it is stable for 

hl = ±&! = positive 

provided A be small enough. The critical equation is thus 

pp- + x [l + 4kY (1 +1(\) + &k2w2 + ... J = 0, 

the other sign of kv being obtainable by changing t into 
A 

§ 6. We proceed now to the case when n = 2. 

If in the equation 

72 

~ +x[m2+4A (hi + hWi) +4A2(h2-\-k2w2) + ...] = 0, 

in which m is an integer, we put 

t = 2 it, £ = eT, 

U = £eimT+?T — imxj, V = ^e~imT+qT +imx 
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we obtain 

where 
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dU 

CIt 
— <?U = — £(u-Vf), ^-gV = 

m cLt 
*(U£--V), 
m 

<p — A {hx + hiWi) + A" {h2 + k2w2) + ..., 

wr = £r+£~r. 

We may then further substitute 

leading to 
W = U£~m-V, U* = mTJ, 

dUx 

dT 

dW 

dr 

-q\J1 = -</>£mW, 

-qW = —£-mU1, 

where 

x = — eimr-grW. 
m 

These equations can be solved by waiting 

q = \qx + X2q2 + , 

IXi — IT\ux-t-A2u2T ..., XV — 
A+r 

m 
T \wx T A w2 + .. 

where A is a constant, and w1} w2, wx, w2, ... are polynomials in £, £~l. 

For m — 2, in particular, we find that if hx = 0, the quantity A is required, and 

determined in the course of the work, and qx = 0. But if hx is not zero, we must 

take A = 0, and obtain qx = \hx, the succeeding q2, g3, ... being real. In fact, as far 

as A3, 

q = iKx-dK+W-ih) \2+ {*L +HW- 1 xs +.... 

which gives 

g* = ihX-ih (iK+W-ih)*3 
+ {A*,4+ah;V- A*,4 ■+P ,%■- i ti-K (fK-+ W) + iV+ivy X‘ +.... 

We know, as is shown in Part II. of this paper, that the form of q2 is valid even 

when hx = 0. Then we have 

q2 = iV {h2+k-W) {h-h+W) +..., 

which, when h2 = 0, is only positive, provided 

5 kx2 > 3 k2 > kx2. 
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The case discussed by Tisserand is that in which k2 = k3 = ... = 0. Then 

CL = 

and the quantity A in the formula for W, or x, is found to be -J-( — 2±\/— 5). 

When m — 3, for the equation 

d2x 

~df 
+ (9 + 8A& cos 21) x = 0, 

we find A = 0, and 
k2\2 

q = - 
269 

12 64.27.5 
&V+..., 

Ui- + W — “ + i) + — 

The question of the reality of q, in cases where Jc2 = 0 = k3 = ..., is discussed by 

Poincare, ‘ Meth. Nouv.,’ II. (1893), p. 243, and by Callandreau, £ Ann. Observ.,’ 

Paris, XXII. (1896), p. 23. So far the results are :— 

(1) For the equation at the bottom of p. 135 (§3) q is real when n2 is not an 

integer, provided the series obtained converges. 

(2) This condition does not however include, for instance, the case when n2 is near 

to unity. For q is imaginary, for the equation 

dt2 
+ [n2 + 8k, cos 2t + ...] x = 0, 

if (n2— l)2 < (4&j)2. It is real if (n2— l)2 > (4^)2, and real if n2— 1 is positive and 

equal to ±4^. This has been proved here. 

(3) q may be real when n is just greater than 2, when k„ k2, ... are small enough. 

This has been proved here. 

(4) q is real when n is any integer greater than 2, if k2 = k3 = ... = 0, but 

imaginary when n — 1 or n = 2. This result is given by Tisserand and 

Callandreau, as above.* 

[Oc£o&er 30, 1915.—It may be worth adding, in connexion with the numerical 

results given in § 6, that the equation 

+ c sin t. x — 0, 
dt2 

in which c is small, is solved by 

x = e^U, 

* See the note at the conclusion of § 21 (p. 184). 
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in which, as far as c3, 

X = 

and, as far as c4, 
v7 2 

(l + irc')> 

U = 1 +c sin t + c2 (i v72 cos t — -g- cos 21) + c3 ( f-g sin t + sin 
3i 

2A 
sin 3f i 

144 y 

+ c4 ( ^ 1 i cos t—cos 2£ - 
11 • Q. , cos 4A 

-t= i cos 314-— . 
432\/2 4608/ 

§ 7. We pass now to the consideration of a pair of simultaneous differential 

equations arising in the consideration of the stability of the motion of three particles 

occupying the angular points of an equilateral triangle moving under their mutual 

gravitation. 

The stability of this motion has been discussed by Routh (‘ Proc. Lond. Math. 

Soc.,’ VI., 1875; ‘ Rigid Dynamics,’ II., p. 61) in the case when the relative paths 

of the particles are circles.* In what follows we do not assume this. 

-< 

The three particles being S, E, M, take an axis through S, say SX, rotating with 

angular velocity 6, the line SE being supposed to coincide very nearly with SX. 

Draw a perpendicular EH from E to SX, denote EH by y, and SH by A + x, where 

x, y will be considered small, their squares being neglected, but A is a variable finite 

quantity. Draw a second axes SY through S at a constant angle - with SX, and 
3 

* The following references may be of use:—Charlier, ‘Die Mechanik des Himmels,’ and ‘Astr. 

Nachr.,’ 193, 15; STOCKWELL, ‘ Astron. Journ.,’ 557 (1904); Linders,'‘ Arkiv for Mat.’ (Stockholm), 

IV., No. 20; Brown, ‘Monthly Notices, R.A.S.,’ LXXI. (1911), pp. 439, 492; Heinrich, ‘Astr. 

Nachr.,’ 194, 12 (December, 1912); Block, ‘Arkiv for Mat.,’ X., 4 (1914). 
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similarly, draw a perpendicular MK from M to SY; denote SK, KM by A + £ and >?. 

If R = SE, r — EM, p — MS, we have, with proper conventions of sign, 

lt“ = (A + xY + y2, p — (A + ^)2 + /, 

-r" = [i(A + g)—^*i\/3 —A —tx]"+ [|-(A-i-^) \/3 + %v — y]~- 

The accelerations of E, relatively to S, parallel to SX and parallel to HE, are, 

respectively, 

— (E + S) | ^ + y/3 —(A + .x) ^j-j~(A + ^)—g-^y/3 ? 
R3 v" p° 

-(E + S)^+M 
nA + f)\/3+^>j—y + + y/3 . 

the accelerations of M, relatively to S, parallel to SY and parallel to KM, are, 

respectively, 

-(M + S)' 
^4ii_gjT 2 (X + ^) — 2>?y/3 — (A + a;) , y/3 ^ (A + f) -y/3 + -g-?? — y 

-1*3 

_-r-i I (A+x)+2 y V 3 
J R3 

A —T? /i i(A + ^)+|->; —y -y/3 \ (A + f)—y/3—A—a; 
V V \2’ ?’3 2 ' r3 

_-]? 3h/~~+ (A + a:) y/3 
^ • R3 

If, then, in the equations of motion relatively to S, after expanding in powers of 

x, y, f, r], we equate the finite and the small parts, the squares of x, y, g, tj being 

neglected, we obtain 

A-A(92 = --f2 
A2 

and 

A20 = constant, = h, say, 

where 

together with 

jm = S + E + M, *6 = % 0 = ^, & c. 
dt 

X—20Y—<9Y— (@2- ^ X = 
\ A3/ 4 A3 

Y + 20X + ex - le2- ^) Y = 00 [(E—M)X+v/3 (E + M) Y], 

c&2 

"4S + E + M 

a/3 
X+(E—M) Y 

x VOL. CCXVI.-A. 
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in which X, Y respectively denote g—x and q—y, and also 

(»2-f3) * = ^ [173 cc + X.y/3 + Y 

y+2 ex + 0x-[e‘- j£)y = [X-Yv/3], 

The first equations have integrals expressible by 

7 h2 

— = 1 + 2A cos 6, ~y 
A l 

= /+ 

the point (A, 0) moving in an ellipse of eccentricity 2A and semilatusrectum l. With 

these values the other equations are much simplified if we take 9, instead of the 

time t, as independent variable, as was pointed out to me by Mr. H. M. Garner, of 

St. John’s College, Cambridge. With this change they become 

where 

and 

a — 

(l + 2A cos 0) (X"-2Y'-X)-4A sin 0 (X'-Y) = aX+KY, 

(1 + 2A cos 9) (Y// + 2X'-Y)-4A sin 0 (Y' + X) = hX+bY, 

8S-E-M 7 _ 3 (E—M) y/3 

(I.) 

4 fi 

X! 

h = 

dX 
do ’ 

Afj. 
b = 

_ — 4S + 5 (E + M) 

4/x 

X" = 
d2X 
de2 

, &c.2 

together with 

(l + 2A cos 9) (x"—2y'—x) — 4A sin 9 (x' — y) — 2x = (Xy73 +Y), 
4/x 

(l +2A cos 9) (y" + 2x' — y) — 4A sin 9 (y' + x) +y = (X—Yy/3). 
4 ft 

(II.) 

J 

The first thing then is to solve the equations (I.), after which the right side in (II.) 

will be known. Considerable simplification can be introduced by change of notation ; 

/27T?.\ 2 / 47rtA 

Th w = exp VT 
let w = exp 

A = jf(a+b + 2) = f, H = b+2ih), K = |-(a—b—2ih), 
so that 

xj _ ■; S + mE + wfiM -for _ 3 S + w2E + wM yj rn2 \ 

~~ S + E + M ’ " S + E + M ’ M t\ 9/’ 

2 _ 0„ SE+SM+EM 

m (S + E + M)2 ’ 

where 



DIFFERENTIAL EQUATIONS OF ASTRONOMICAL INTEREST. 147 

further 

p = A+(HK)* = f , q = A— (HK)* = f 1-1- 

nv 2\r 

so that 

Also 

(iy 

_p + g = 3, pq — iw2. 

w = (1 + 2X cos 0) (X-fYY), u = (l+ 2X cos 0) (X—fY), 

whereby the equations (I.) become 

(1 + 2X cos 0) (u" + 2ivl) = Aw + Hu, 
* 

(1 -f 2X cos 0) (v" — 2iv') = Kw+Av, _ 

m which v! = du/d6, &c., and then 

<t> = fGw + HY, Ah = K-w—HY, 

so that d>, 'h are both real, and 

<b + Ak = 2K*(l + 2X cos 0) (XqYY), <f> —Ah = 2H1 (1+ 2X cos 0) (X—iY), 

and the equations (I.) become 

(1 + 2X cos 0) (<l>// — 2V) = p4 

(1 + 2X cos 0) ('V + 2V) = gY, 

in which, beside the eccentricity 2X, there are the two constants p, q, which are 

dependent upon the single number m. 

The equations (II.), by means of the changes 

IJ = (l + 2X cos 0) (x + iy), -Y = (l + 2X cos 0) (x—iy), 

(I •)' 

become 

(1 + 2X cos 0) (U" + 2 AY) —| (U + Y) 
3M 

2w 
(1— w2)v, 

3M 
(1 + 2X cos 0) (Y" —2fY') —f (U + Y) =^±(l-w)u. 

2/x 

(ii. y 

Consider now the equations (I.)". We know that the solutions are of the form 

<f> = Ce^F + G^F. + G^F.+G^F,, 

w = Cei'tflG+C1e^0G1+C2e^G2 + C3e^G3, 

where C, Cj, C2, C3 are arbitrary constants, F, F1; ..., G2, Gs are definite functions of 

period 2tt, and k, k1} k2, ks are definite constants. When X = 0, substituting in the 

equations 
<f> = eia\ A = Veia\ 

x 2 
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we obtain 
cr2+p + 2i<rP = 0, (cr2 + g) P-2ia = 0, 

so that the values assumed by k, ku k.2, ks, when X = 0, are the roots of the equation 

or 

Thus 

(cr2+_p) (cr2 + q) — 4o-2 = 0, 

IT4 — iT2 + 4-?7l2 = 0. 

ct — ± {|-(l-hr/7)5 ± (l—w)'}, 

and the four values are all imaginary when m > 1, and all real when m < 1. 

Supposing S > E > M, we find at once, from the formula for m, that the least 

possible value of S/(S + E + M) in order that m < 1 is 0‘96147..., but this requires M 

to be very small; but if S/(S + E + M) be greater than 0"9618..., then m is certainly 

< 1 even if E = M. In our solar system the sun’s mass is more than 99‘8 per cent, 

of the mass of the whole system; thus if S in our problem were the sun, and E, M 

were any two planets of the system, the condition for m < 1 would be easily satisfied. 

We shall then suppose m < 1. 

Now compare with the equations (I.)" the equations 

(1—2X cos 9)(<X>" — 2'P/) = £>d>, 

(1 -2X cos 0) (*" + 2$') = qdq 
(III.) 

obtained from (I.)" by change of the sign of X. They can also be obtained from (I.)" 

by changing 6 into 6 + tt. This last change shows that the characteristic constants k 
belonging to the equations (III.) are the same as for (I.)", while the former change 

shows that the values of k proper to (III.) are obtained by changing the sign of X in 

the constants k appropriate for (I.)". When m is such that the values of k for X = 0, 

namely, the four values of <x above, are all different, a change in the sign of X cannot 

interchange the values of k among themselves. Thus we infer that each k is unaltered 

by changing the sign of X ; for two of the values of o- can only be equal when m2 = 1. 

In the applications in view of which the question was first considered, S denotes the 

sun, E denotes either Jupiter, or another planet such as Mercury, while M is of 

negligible mass. When E is Jupiter we have 

m2 = 27ToW(1+to15o)2 = 0T257, X = £(0'05) = 0T25, 

and m2/x is nearly unity. When E is mercury 

m2 = 27/5 ‘ 106 = 0-0 0 0 0 0 5 4, X = £(0*2) = 0*1, 

and m2 — 5"4X6, m = (2"3)x3, nearly. In either case we may regard m as small, and 

the four possible values of a are approximately 

±(l— im2), ±fm, 
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of which the first two correspond to a period nearly the same but slightly greater 

2 
than that of E, and the last two correspond to a period — times that of E. When 

m 

E is Jupiter, this last is -2/- times the period of Jupiter, or nearly 150 years; when E 

is Mercury, this period is approximately 200 years. As m is small we have approxi¬ 

mately 
p = 3 — -y-//n2, q = -y.pn2. 

To neglect m2 would be to neglect the ratio 27E/S ; but we may remark in passing 

that if we put q = 0,p = 3, the equations give 

together with 
>k/ + 2<f> = C, a constant, 

j,"+1+8Acose$ = 2C 
1 + 2X cos 0 

of which the integration can be completed in finite terms. For it may be verified 

that the equation 
(1 + 2X cos 0) <E>" + (1 + 8X cos 0) d> = 0 

possesses the two integrals 
sin 0 (l + 2X cos 0), 

cos 0-— 2X (1T sin2 0) — 4X2 cos 0 + 8X3 cos 20+ 12X2 sin 0 (l + 2X cos 0) \[s, 

where 
dO 

1 + 2X cos 0 * 

§ 8. We consider briefly, first of all, what would be the application of the method 

of infinite determinants to the equations (I.)", which we may now write, with x, y for 

d>, A, in the forms 
(1 + 2X cos 0) (x"~ 2y') = px, 

(1 + 2X cos 0) (y" + 2x') = qy. 
We should substitute 

x 
oo 

— oo 

and equate to zero the coefficients of the various powers of elB. The substitution 

gives, if f = eie, 

[l +X (£+ £-1)] 2 [A„ (/c+n)" + 2i (/c+n) Bn] f'WpSA,^” = 0, 

[l +X (£+f-1)] 2 [B„ (k+h)2—2i(ic+n) A„]fi! + gAB,J" = 0, 

and, denoting k + n by Kn, we obtain for the unknown coefficients A„, B,s the equations 

^ (A„_1/c2n_1 + 2«Bn_1K„_1) + A„ (/+“+p) + 27Bn/c„+X (A.n+1K-Jn+l + 2iBn+1Kn+1) = 0, 

X (—2^A„_1K:n_1 + B„_1K''„_1) — 2iA„fcn + B„ {icn2 + q) + \ (_2iAn+1/c,1+1+B,1+1/c2„+1) = 0 
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If we now write 
= A^Kn2+2iBnKn, 

which are equivalent with 

A _ Kn^)n n 

n 0,k2-4) 

the equations may be replaced by 

Qn = — 2?.ABKn + B nK,‘\ 

2iPn + KnQnt 

iKn— 4) 

AP„_i +areP7t+^nQ7l + APn + 1 — 0, 

•^Qn-l + CnPn + (4Qn+ AQn + 1 = 0, 
• • (A) 

wherein 

an — 1 + 
P 

> K = 
— 2ip 

<n— 4 * Kn(fCn2 — 4) 

_ 2iq 

Kn(Kn~ 4) 
dn — 1 + q 

4 

so that 

A (1 _hc - KS-Kn+W } 
n n n n *.>(^-4) 

it being remembered that y> + g = 3, g>g = jm2. 

When we eliminate Pn_l5 Qn+1 from the equations (A), we obtain an infinite 

determinant, which, leaving aside questions of convergence, we may denote by 

A «_! A 

A c_j d_i . A 

A . a b A 

A d A 

A eq A 

A Cj dj A 

= 0. 

The product of the diagonal determinants andn—bncn is here 

Sin IT (K — O']) . Sin 7T (K — IT2) • SID 7T (k— (T3) . Sill 7T (/C— CT4) 

Sin4 7TK 

where <ru cr2, cr3, <x4 are the four roots of cP—cP + \nP — 0, previously considered. In 

using this determinant to obtain a further approximation to k it would seem 
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appropriate to use a theorem* for the expression of a determinant of 2n rows and 

columns as a Pfaffian, a sum 1.3.5... (2n— l) terms, of which each term is a product 

of n factors, each factor being of the form 

(12) = a1b\ - a\bx + a2b'2 - a'2b2 + ... + anb'n - a'nbn, 

where the elements 
ci\b\, a2b2, ..., ctnbn, 

a'l&'i, a'2b'2, ... a'nb'n, 

are the constituents of two rows of the determinant. For in this case the factors (12) 

are easily calculated. But we do not pursue this method. 

§ 9. Instead we proceed as follows. In the equations 

[l+\(i + ^1)][x"-2y'] = px, 

[1+X(f+^-1)] \_y" + 2x'~\ = qy, 
where f = ei<3, write 

x = eU6X, y = eix6Y, k = <r + *2X2 + /c4X4 + ..., 

in which k2, k4, ... are certain functions of p, q to be determined. Then the equations 

become 
[1 + xa+r1)] [X"— 2 Y' + 2bc (X'—Y) —/c2X] = pX,~) 

[l + X^+r1)] [Y"—2X' + 2\k (Y' + X)-k2Y] = qY, J 

which by the general theory are capable of periodic solution when k is properly 

chosen. Put then 

X = 1T \<f>i + Y(p2 +..., Y = P (1 + + Y\fs2 + ...), 

where P is a constant; the differential equations then take the forms 

(1 + \w) (H0 + xHi + Xffl2+ ...) — pX, 

(l + Xw) (K0 + XK4 + X^Ia^t-...) = qY, 

w denoting £+£_1. Comparing the coefficients of like powers of X, 

Hu =p, K0 = P3, Hf+wHo = p<pu Kj + wKo = gP^n, 

and, in general, 
Hn+wKn_x =p<Pn, Kn+wKn_! - Pq\Jsn, 

so that 
Hi = p (fa-w), Kx = Pq (fa-w). 

* Proved in Scott-Mathews’ ‘ Determinants ’ (1904), Chap. VIII, p. 99, § 19. Also in Baker, 

‘ Multiply-periodic Functions,’ p. 314. 
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and, in general, 

H„ = P l<pn-W</>n-l + W2<t>n-2- ••• +(-w)n]> 

K„ = Pg[^-#,_i + wVn->- ••• +(-w)n], 

where H„, Kn are the coefficients of X” respectively in 

In particular 

so that 

and, as previously, 

while, if we write 

X"-2Y' + 2A(X'-Y)-/c2X, 

Y" + 2X' + 2 A (Y' + X) — k2Y. 

H0 = —2?itP — a2, K0 - 2?<r — <x2P, 

o-2+p + 2fo-P = 0, 2 icr — (cr2 + g)P, 

O'4 — (T2 + = 0, 

p - a2+P n - 0-2+9 ^ 0 * 3 o ' 5 — 2‘lar Zlcr 

which are both pure imaginaries, we have PQ = 1. 

Next 
Hi = (j>'\ — + 2icr {(p\ — P\^i) — 

Kx = P + 2Q<j>\ + 2la (A + Qfa) — <tVi] > 

putting these respectively equal to p^—w), Pq(\Js1 — tv), we obtain two differential 

equations for <px and Ai- If we assume 

0i — A-X+A_X_\ A = BX+B_X-1> 
and notice that 

(ry = w-r, (D" = -ap, 
we find, writing <r„ for <r + n, 

If 

these give 

Aj (<r*+p) + 2PA1B1 = P, A_J (o-_i2+p) + 2PAr_1B__1 = £>, 

-Ax . 2QAj+' {o-2 + q) Bx = q, -A_12Qfir_1 + (<r_i+q) B_x — q. 

Aj = —crd + im2, 

A]AX = (<r2 + q)p + ~{<r2+p) q, 

AA = (<p2+_p)g+-(°'2+g).p, 
<T 

with similar equations for A_ls B_x. 

Proceeding similarly to equate terms in X2, we find 

(j)' 2 + 2i<T(j/2 — cr202—2P + ftOl/'g) —2/Co (tP + ix) = P ( 02 — W(j)1 + w2), 

y]s"2+ 2i(r\Is,2 — O-2102 + 2Q (0/2 + ?ct02) —2/c2 (—'iQ + cr) = g (\ls2 — W\Js 1 + tV2). 
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If herein we assume 

<f>2 — A2i'“ + A_2^”' + H, = B2£“ + B_2£ “+K, 

and equate terms in £2, <A2, f°, we obtain 

A2(o-22+j>) + 2Pfir2B3 =_p(A1-l), A_2(o-2_2+£>) +2P»<r_aB_a =p( A_3-l), 

— A2.2Q%<T2-\- (o"22 + c[) B2 = (/ (Bj — l), — A_2- 2Q?-CT_2_t (cr2_2 + q) B_ 2 ~~ q (B_J —l), 

and 
(cr2+p)(H-K)+2^(fP + (r) =_p(A1+A_1-2)J 

-(a2 + g)(H — K)+2/c3(-«:Q + o-) = g(B1 + B_1-2), 

wherein the coefficients of H —K and k2 have for determinant 

(o-2+_p) (—?Q + cr) + (o-2 + g) (?P + cr), 
which is 

a (l — m2y 

and is not zero. That TI, K should not be determinable separately is obvious 

a priori; to regard H as zero would be equivalent to dividing X, Y by a power 

series in A2 with constant coefficients. We notice that the successive coefficients 

A], A_j, ..., B2, B_ _2 are all real. The value found for k2 is 

7 —6o-2 

cr (l —2cr2) (l —4<r2)' 

A similar procedure can be continued. The differential equations for <p3, \[s3 can be 

solved by forms 

A = A3^+A_3r3+H1f+H_irb V-3 = B3r + B_3r3+K1^+K_irb 

the differential equations for <pif \fri by forms 

= A4r+A_4r4 + M3r+MJ-2+M, 

^ = B4r+B_4rwN2r+N_2r2+N, 

and then the terms in A will involve the unknown quantities 

(A +p) (M — N) + 2k4 (iP + cr), 

-(<r2 + g)(M-N) +2Ki{-iQ + a), 

from which Ki is found. And it serves as verification of the computation to see that a.-4 

involves H, K only in the combination H —K, as it must in order to be determined 

without ambiguity. 

VOL. CCXVI.-A. Y 
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The value found for x is of the form 

* = T[l + (H, H~') + (AT, AT2, A2) + (at, at2, X'V AT1) 

+ (AT, AT4, AT, AT2, A4) + ...], 
or, say, 

x = A*9[v0 + A£m1 + \£~1w_1 +A2£2,w2 i-X2£-2w_2+...], 

where every one of u0, uu u_u u2, r_2, ... is a power series in X2 with real coefficients, 

not generally vanishing with X2. And similarly for y. 

§ 10. The interesting case of the preceding solution is that corresponding to the 

value of <r given by 

cr = |-[(l+«r)i — (1— m)*], = ~ + ...j. 

The quantity 
7 — 6q-2 

K* Pq (7(l-2cr2)(l-4(72 

is then equal to 
bn (7 + %5-m2) 

approximately, and k2X2 is of the order m\2. When m2 cc x, this is of the order m° or 

X5/2; when m oc x3, it is of the order mbl3 or X5. Thus a very few terms of the preceding 

solutions would seem to be sufficient for practical cases. 

PART II. 

§11. A large part of the interest of Poincare’s ‘ Methodes Nouvelles de la 

Mecanique Celeste ’ depends on his criticism of the convergence of the series used 

by astronomers, particularly those series in which the time enters only under 

trigonometrical signs. In t. II., p. 277, he refers to a linear differential equation 

4p+Ti+V') = o, 

in which A, for our purposes, may be supposed to have a form 

A = 4a cos ht + ±b cos kt, 

in which a, b are small. When h, k are commensurable the equation has periodic 

coefficients, and Poincare makes the convergence of the series expressing the solution 

depend on this circumstance (‘ Meth. Nouv.,’ t. I., p. 66). Considering the case in 

which h and k are incommensurable, and so A n°t periodic, and supposing a, b to 

have common a small factor ju, he obtains formal solutions of the differential equation 

in sines and cosines, and says “ les series . . ., qu’on peut ordonner suivant les 

puissances de /x, ne sont plus convergentes ” (‘Meth Nouv.,’ t. II., pp. 277, 278). On 



DIFFERENTIAL EQUATIONS OF ASTRONOMICAL INTEREST. 1 55 

the contrary, I believe that the solution of the differential equation above, arranged 

as a power series in a and b, converges for all finite values of these parameters, 

and that this is a consequence of a general theory of linear differential equations 

considered in papers* published by me in 1902. As this theory is capable of 

application to many other differential equations, as will be illustrated below by 

application to the equation considered by G. W. Hill for the motion of the moon’s 

perigee, I wish to deal with it here, repeating the argument in part. 

§ 12. Consider any system of linear differential equations, the n2 coefficients 

= uAxx + ... + uinxn, (i = 1, 2, ..., n), 

u{j being functions of t. If these are considered only for real values of t, the 

properties which we require to assume are that, along a certain range which we 

shall suppose to include t — 0, these functions ut] are single-valued, limited, and 

capable of integration, the same being true of certain other functions derived from 

these by multiplications, and further, that certain infinite series, which we shall 

prove to be absolutely and uniformly convergent, are capable of differentiation, term 

by term. But in the majority of practical cases the coefficients utj may be looked 

upon as the values, when t is real, of functions of a complex variable t. In this case 

we suppose a star region to be defined by lines passing to infinity from certain points 

in the finite part of the plane, which we call the singular points ; we suppose t — 0 

not to be a singular point, and the lines may be straight continuations of the radii 

joining the origin to these singular points. Within this star region, bounded by the 

lines in question, the functions utj are supposed to be single-valued and capable of 

development by power series about every point, forming monogenic analytic functions 

in the usual sense. Taking then any region within this star region, we obtain 

solutions of the differential equations, with arbitrary values for t = 0, in the form of 

infinite series of functions, obtained by quadratures, which are proved to converge 

absolutely and uniformly within the region taken. 

The method of forming these solutions is extremely simple, involving only 

integrations and multiplications, but the way in which the work is arranged, though 

often of great utility, does not seem yet to find common acceptance, and some words 

must be given to it. 

* ‘Proc. Lond. Math. Soc.,’ XXXIV., 1902, p-. 355; XXXV., 1902, p. 339. See also the same ‘ Proc.,’ 

2nd Series, II., p. 293, where it is explained that the same idea had already been used by Peano 

and others. To me the method was independently suggested by the theory of continuous groups, 

‘Proc. Lond. Math. Soc.,’ XXXIV., 1902, p. 91. Poincare’s conclusions as to the convergence of 

astronomical series have been criticised by G. W. Hill, ‘ Coll. Works,’ IV., p. 94; but the point there at 

issue is different from that considered here. In connexion with an example considered by Poincare, 

loc. cit., p. 279, see Bruns, ‘ Astr. Nachr.,’No. 2606 (CIX., 1884), pp. 217, 218. Also Borei., ‘ Theorie 

des Fonctions ’ (1898), p. 27; Hardy, ‘Quart. Journ.,’ XXXVI., p. 93: ‘Proc. Lond. Math. Soc.,’III., 

p. 441, and the references there given. 

Y 2 
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The n2 quantities can be arranged to form a square of n rows and n columns, 

the first suffix i denoting the row, and the second suffix j denoting the column in 

which a particular element ui} is placed. This square is denoted by a single symbol, 

say u, and called a matrix. The symbol uv, formed from the two symbols u, v, 

written in a definite order, denotes then another matrix whose (i, j)th element has 

the value 

UilVlj + Ui2V2j + • • • + UinVnj, 

which is formed from the elements of the ith row of the matrix u and those of the 

jth column of the matrix v. This new matrix uv is called the product of u and v, 

taken in this order ; it is generally different from vu. The symbol 1, when used for 

a matrix of an assigned number of rows and columns, denotes the matrix of which 

every element is zero except those in the diagonal, all of which have the same value, 

unity; it is easy to see that any matrix is unaltered by multiplication with the 

matrix unity of the same number of rows and columns. The symbol u~l denotes 

the matrix such that the product u~1u is the matrix unity; in that case uur1 is equal 

to u~lu; the symbol u~x is nugatory when the determinant formed with the elements 

of u is zero, and only then. In general, the determinant formed with the elements 

of u will be denoted by \u\. By the sum, u + v, of two matrices u, v, of the same 

number of rows and columns, is meant the matrix whose (i, j)th element is u^+Vy, 

and, similarly, for the difference. Frequently we denote the aggregate of a row of 

n quantities, xl} x2, ..., xn by the single letter x; then if u be a matrix of n rows and 

columns, the symbol ux denotes a set of n quantities of which the ith is 

uilx1 + ui2x2 + ... + uinxn. 

By the differential coefficient of a matrix we mean the single matrix whose elements 

are the differential coefficients of the given one. In what follows, if the (i, ^)th 

element of a matrix u be a function of t, we denote by Qu the matrix of which the 

(i, j)th element is the integral of utj taken in regard to t from t — 0 to t = t. If, for 

an instant this matrix Qu be denoted by v, the product matrix uv will be denoted 

by uQu, and the matrix Q (uv), or Q(uQu), will be denoted by QuQu. Similarly, 

Q (u . QuQu) will be denoted by QuQuQu, and so on. 

Now consider a matrix of which the (i, j)th element is the infinite series formed by 

the sum of the (i, j )th elements taken from the matrix unity (of the same number of 

rows and columns as u), the matrix Qu, the matrix QuQu, the matrix QuQuQu, and 

so on. This will be denoted by 

Q (u) = 1 + Qu + QuQu + QuQuQu +..., 

and the series on the right will be said to be uniformly and absolutely convergent 

when this property is proved to hold for each of the n2 infinite series which constitute 

its elements. 
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Repeating now the demonstration given, ‘ Proc. Lond. Math. Soc.,’ April 10, 1902, 

p. 354, let u{ja) denote the (i,j)th element of the matrix Qu, that is, 

similarly, let u~2) denote the (i, j)ih element of the matrix QuQu, namely, 

u.l2u2j (i) + . . • + UinUnjl]\ dt. 

and so on. For the region chosen within the star region above explained, when the 

functions utJ are functions of a complex variable, or for the range of values of t 

adopted when the elements uXJ are functions of a real variable, there will exist a real 

positive quantity My not exceeded by the absolute value of utj for the values of t 

involved. Taking a path of integration limited to such values, from the origin t ~ 0 

to t = t, this being a rectifiable curve of length s, let tx be an intermediate point of 

this path, the length of the path from the origin to tx being sv Then we have, 

considering absolute values, 

and in particular 

Similarly, 

| My(1) (t) I — Mi- I dsx < sMv, 
JO 

|^(l)(b)|^SiMy. 

ud2) (01^1 (MflSiMy + ... + MtV5jM,y-) dsx; 
Jo 

now if M denote the matrix whose element is M^, the (i, /)th element of the 

matrix M2, formed by the product of M with itself, will be 

Mj'iMjj + M!2M2j +... + MinMn;-, 

which we may denote by (M2)^; thence 

and in particular 

«vla(OI5(M% Si ds, ^ is- (M%, 

W(M%. 

We can continue this process. The nest step will be 
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Thus we see that each of the n2 infinite series constituting the elements of the 
CD 

matrix 
0 ('u) = 1 t C^u T- QwQw +... 

has terms whose moduli are respectively equal to, or less than, the real positive terms 

of the corresponding infinite series constituting the elements of the matrix 

l+sM+Vyp+V M3 +.. 

This last is, however, certainly convergent for all finite values of s, whatever be 

the (finite) values of the elements of the matrix M. For the case when the algebraic 

equation satisfied by M has unequal roots, its sum is given by the formula of ‘ Proc. 

Lond. Math. Soc.,’ XXXIV., February 14, 1901, p. 114, which can be easily modified 

to meet the case of unequal l oots. 

Thus each of the elements of the matrix Q (u) is an absolutely and uniformly 

convergent series ; in the case when the elements u{j are functions of the complex 

variable, as explained above, it follows that every element of the matrix Q (u) is a 

function of the complex variable, and differentiation (and integration) of the series 

representing this elements is permissible, term by term. For the case of real functions 

we introduce this as a condition. 

Hence, if cc° denote a row of n arbitrary values aq°, x2°, ..., xn°, the row of n 

quantities denoted by 
x — Q (u) x° 

is at once seen to form a set of n integrals of the differential equations, reducing for 

t — 0 to the arbitrary values x°, that is, x{ reducing to x°. For if v denote any 

matrix, of n rows and columns, whose elements are differentiable functions of t, if x° 

denote a row of n constants, and y the set of n functions given by 

that is, 

we have 

y = vx°, 

Vi — VilXl + Vx2X2 + • • • + VinXn> 

,d± 
dt dt 1 dt 

in i) 
tX/ -» 1 

which, if 4^ denote the matrix whose elements are the differential coefficients of the 
dt 

elements of v, we can denote by 

dy dv o 
dt dt ' 

x = 12 (u) x°, 
Hence the equation 
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gives 

or 

— — ^ (1 + Qw+Q,uQ,u +...) x°, 

= -^ [l + Qu + Q (uQu) + Q (uQuQu) + ...] cc°, 

= [%+wQw+mQwQw +...] x°, 

— w[l + Qw + QwQw+...]a;0, 

= uQ (u) jc°, 

dxjdt = ux, 

so that the functions x — Q (u)x° satisfy the differential equations. By the definition, 

Qv.ij reduces to zero for t = 0 ; hence 12 (u) reduces to its first term, the matrix unity, 

when t — 0 ; that is, x — 12 (u) x° reduces to x — x0 when t — 0. 

In what follows we shall require a particular property of the matrix 12 (u), given in 

‘ Proc. Lond. Math. Soc.,’ XXXV., December 11, 1902, p. 339. If u, v be any two 

matrices of n rows and columns, of similar character to the u considered above, the 

property is expressed by 

12 (u + v) = 12 (u) 12 {[12 (w)]_1 vQ (w)}. 

where [12 (w)]_1 is the matrix inverse to 12 (u), defined above, such that [12 (w)]-1 12 (u) = 1. 

The theorem is nugatory when the determinant of 12 (u) is zero. It is only equivalent 

to saying that if in the system of linear differential equations 

that is, 

dx 

dt 
(u + v) x, 

dx{ 

dt 
{Uil + Dl) X\ + • • • + (Uin + Vin) Xm 

we introduce a set of n new dependent variables, denoted by 2, by means of the 

equations 
x = 12 (u)z, or 2 = [12 (w)]-1 x, 

then 

dz/dt = [12 (w)]^1 vQ (u) 2. 

This follows at once from 

dx 

(-uJrv)x=ft = s[q(“)2] = 11q(“). 

d 
: + 12 (u) 

dz 

dt 

= \uQ, (w)] 2 + 12 (u) = uQ (u) 2+12 (u) ^ 

= ux+12 (u) 
dz 

dt 
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which gives 

Q (u) — vx = 
v ' dt 

vQ (u) z. 

In what follows we shall generally write hff1 (u) in place of [Q (w)]_1. 

Another property to be noticed* is that the determinant of the matrix 0 (it) is 

equal to the exponential of the sum of the integrals from 0 to £ of the diagonal 

elements of the matrix u. For, if il%j denote the general element of H (it), the 

equation 

Q (it) = uQ (it), 

already remarked, is the aggregate of the equations 

— Uil®lj + ••• + Uin& ny 

Further, the differential coefficient of a determinant of n rows and columns can be 

written as a sum of n determinants, each of which is obtained from the original 

determinant by replacing the elements of one row respectively by their differential 

coefficients. Hence we at once see that, if A denote the determinant of £1 (u), 

dA/dt = (un + u.22+ ... + unn) A, 

which establishes the result in question. 

In particular, if the sum of the diagonal elements of u, 

Un + U22 + •.. + unn, 

be zero, the determinant of Q(u) is independent of t, and is thus equal to unity. 

This result is of frequent application. 

§ 13. After these introductory remarks we may at once show that the equation 

y-72/y, 

—' + x (l + 4a cos ht + 46 cos Jet) = 0, 
Civ 

to which reference has been made, is capable of solution as an absolutely and 

uniformly converging series in a, b, whatever h and Jc may be. It will be as simple, 

and of utility for other applications we wish to make, to take the equation 

i^ + x(n2 + dr) = 0, 

in which we may suppose n to be an integer. 

* Cf. Darboux, ‘ Compt. Rend.,’ XC. (188.0), p. 526. 
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In this last equation, put 

leading to 

then we have 

Writing 

these are 

or, say, 

_ 1nint I dtC X = ie 
dt 

—mx , 

ini — inx = Xe_“(—Ye1, 

dX _ i\Js 

Y = ^e~int +inx j, 

dt = Xe~int+Yeint; 

dt 
- -Y eint (Xe~int-Yeint), 

2 Yb 

~ = - ^ e~int (Xe~int—Yeinl). 
Cuts 2 71 

2 it = T, £ = eT, 

^ = - ± (X-YC), - ± (I(--Y), 
dr 4ny dr Anv 

\r% -i 

where, as is usual, the single quantity — written before the matrix, is to be 

multiplied into every element of the matrix. 

In particular, when n = 1, \\r = Aa cos ht + Ab cos kt, 

L(x,Y) = («p+M(x,Y),. 

where p, denote the matrices 

P = i(f4A+f-4*)/ -l, f 

Ua 1. 

Thus the solution is expressed by 

(X, Y) — O (ap+bq) (X°, Y"), 

where Q (op + bq) is of the form 

1 + aQp + bQq + a2QpQ,p + ab {QpQq + QqQp) + YQqQq + ..., 

and we have proved that this series is uniformly and absolutely convergent. 

If we assume such a form of solution it is easy by successive steps to obtain the 

values of the coefficients independently of the method we have adopted. What is of 

present importance is that we have shown the series to be convergent, a fact which 

appears to be denied by Poincare, 

vol. eexvi.—A. z 
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§ 14. Leaving aside this point, we pass on now to the application of the general 

method here explained to the computation of the integrals of particular differential 

equations with periodic coefficients, as, for instance, the equation for the motion of 

the lunar perigee, considered by G. W. Hill. 

It is known from the general theory that the solutions of the n equations 

dxjdt = 11^+ ...+ulnxn, (i = 1, 2, ..., n), 

in which ua, ..., uin are single-valued functions with a common period, say tv, can be 

written, in the most general case, in the forms 

xi = th1eAl^il +... + AaeA4^>in, 

wherein A1; ..., An are arbitrary constants, \1} ..., Xn are n definite constants, and the 

functions are n2 definite functions all with the period tv. In many applications it 

is the constants Xl5 ..., \n which it is of most importance to find; when these are all 

pure imaginaries, the motion* represented by the differential equations presents, 

beyond the fundamental period tv, secondary oscillations of periods r/i\r, and the 

motion is conventionally said to be stable. 

We show first how this form of solution naturally arises from the point of view we 

have adopted. 

Write Qq (u) in place of Q (u), and for simplicity write only two rows and columns 

of the matrix, though the argument is quite general. Make the limitation, which, 

as is well known, does not cover all cases, that there exists a matrix of constants, h, 

of n rows and columns, whose inverse is denoted by A-1, such that the complete 

matrix Off (u) can be written in the form 

o0wH = 0 \h- 

witli only diagonal elements, here denoted by ew'w, elC2W, in the reduced matrix. This 

will be so, in the technical phraseology, if the matrix Q0W (u) has linear invariant 

factors.! Then, from the definition of L (u), 

while, as u has period w, 

Q0w+t (u) = Qww+t(u) .Q0w{u), 

&ww+t (u) = QJ (u). 

* Interesting physical examples are given by Lord Rayleigh, 1 Collected Works,’ III., p. 1. 

t A proof of the general theorem for the reduction of a matrix, valid when this is of vanishing 

determinant, is given, ‘ Proc. Camb. Phil. Soc.,’ XII. (1903), p. 65. The literature of this matter, which 

begins with Sylvester, ‘Coll. Papers,’ I., pp. 119, 139, 219, and Weierstrass, ‘Ges. Werke,’ I., p. 233, 

is very wide. The reader may consult Mutii, ‘ Elementartheiler,’ Leipzig, 1899. 
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and so 

flence 
Q0w+t (u) . h = Q* (u). h/eic'w, 0 \h~\ 

\ 0, eiC2W 

Q0w+t (u). h /e-iCl{w+1\ 0 \ = Qq (u) . h /e~ic'\ 0 

V 0, e-iot(u,+t)J \ 0j g 

This shows that the matrix on the right lias period w. Put then 

P0* = Q* {u) h /e~ici\ 0 \h~\ 

\ 0, e~iC2tJ 

which has period tv, and is such that P0,,; = P0° = 1. The matrix QJ ( u) can therefore 

be written in the form 
IV (u) = P,/ . h/eiClt, 0 \h~\ 

\ 0, etC2y 

which is the theorem in question. 

We now compare this with the form of solution of the original differential 

equations by the method of successive approximation followed by Lagrange, 

Laplace, and others. We have 

V'V 0 \ = 1 +it/c1> ° \ + 2j An 0 \ + ... ; 

0, e icit Vo, w 0, c2 

thus 

tv (u) = Pof + tP {hyh-1) + i- P {hy2Jrl) + ... , 

where P is written for Pu4, and y is written for 

V, 0 

0, ic2 

If then, as in Laplace, ‘ Mec. Cel.,’ Liv. II., Ch. Y., t. L, of the edition of 1878. 

p. 266, we obtain the solutions of the differential equations in the form 

(P04 + £A + fT>+...) x°, 

where A, B are certain periodic matrices, and x° is a row of arbitrary constants, 

we can obtain the constants ic1, ic2, which are the most important quantities in many 

applications, by taking the matrix A, which arises as the coefficient oft, and is equal 

in our notation to 

p»‘ (MM, 
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putting therein t — 0, so obtaining, say A0, equal in our notation to hyhrx, and then 

solving the determinantal equation 

IA0—A | = 0, 

whose roots are icx and ic2. This process will be found to be equivalent to the 

general procedure explained by Laplace, in the passage above referred to, for 

bringing tire time under trigonometrical signs. AVe have considered only the case 

of linear differential equations with periodic coefficients, and have supposed Q0W (u) to 

have linear invariant factors ; Laplace’s method, if less definite, is of much wider 

application. An interesting exposition of the method in general is given by 

M. 0. Callandreau, ‘Ann. de l’Observ. de Paris,’ XXII., 1896, pp. 16, 20. 

AA'e may notice that 
A0 = h/ic1, 0\/?_1 

0, ic2/ 

gives 

so that we also have 

Q (A0) = h /eic'\ 0 \ h~\ 

\ 0, eicV 

Q (u) = P(/ . ii (A0) 

— Pof (1 + tA0+\t2 A02 +...), 

and the quantities e'ClW, elClW are the roots of the equation 

\Q0w(u)-P\ = 0. 

§ 15. When the sum of the diagonal elements of the matrix u is zero, the 

determinant of Q (u) is unity, as above remarked. In this case, when n — 2, the two 

quantities elc'w, e'C2W are inverses and c2 = — cx. In this case the equation 

\Q0w(u)-P\= 0 

gives at once the value of cos cw. This appears, however, a less advantageous way 

of determining ct, c2 than that explained above, as requiring greater approximation 

in the calculation of {u)> as will be seen in examples. 

The fact that cx, c2 are equal and of opposite signs is a particular case of a 

well-known theorem for the variational equations arising in the general dynamical 

case, which is proved by Poincare (‘Meth. Nouv.,’ I., 193). The following proof, 

though longer, appears more fundamental in character. The general dynamical 

equations being 
dxr r/F dyr 
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where it will be sufficient to suppose r to have the values 1, 2 ; let 

Xr = <pr {t), Ur = i'r (0> 

be a solution of these equations. Substitute in the differential equations 

Xr ~ <Pr(t) + £r> Ur ~ V'V (0 + 

and retain only first powers of the quantities £. and which are supposed to be 

small. We thence obtain a system of linear differential equations of the form 

where /3 is the skew-symmetrical matrix of constants given by 

/3 — 0 — 1 0 0 

10 0 0 

0 0 0 -1 

0 0 10 

(so that (3 1 = — ,8), and A is a symmetrical matrix whose elements are functions of t. 

We then have the theorems following :—- o 

(a) The roots of the determinantal equation for A, 

)8_1A—X| = 0, 

fall into pairs of equal roots of opposite sign ; 

(b) The determinantal equation for p, 

Q(/3-1A)-P| = 0, 

is a reciprocal equation, unaltered by changing p into p~l. 

To express the proof we require a notation for the matrix obtained from a given 

matrix u by interchanging its rows with its columns, thus placing the element u7j in 

the [j, i)th instead of the (i, j)th place. This transposed matrix may be denoted by 

trs (u) or by u. It is easy also to show that 

[ii (?t)] -1 = trs [ii (— u)\. 

Then (a) is immediate from the obvious relations among determinants expressed by 

A —/3A | = | A-/3X| = | A + /3X|, 

since A = A, /3 — —f3. 
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For (b), since 

PO, (u) p-1 = 0 (pup-1), trs (p-1 A) = — Ap~\ 

we have the following transformations of matrices 

[1} (/VIA)]-1 = trs [Q (A/3-1)] = trs [/3Q (p-1 A) /3-1] = /V1 [trs Q (/3-1A)] /3, 

and hence, writing LL1 (u) for [1} (w)]-1, the following equations among determinants 

| Q-1 (p-1A)-P | = | trs Q (p-lA)-P | = | Q (p-1 A)-P \, 

which establishes the result in question. 

§ 16. In many dynamical applications the matrix A is a sum of two matrices 

A = a + A 

where a is a symmetrical matrix of real constants, and L a symmetrical matrix whose 

elements are small. Suppose, further, that p, denoting a row of 2n real variables 

px, p2, ..., the matrix a is such that the quadratic form 

— — ^ ij P i P] 

does not vanish unless every one of the 2n elements of p is zero, which requires that 

the determinant \a\ is not zero. Then, if this quadratic form be denoted by ap2, 

and if each of p and >j be a row of 2n real quantities, the form 

a.(g+ir]) (g.— m), = a.g2 + ia (]£—&)■+arf, = a(g2 + p), 

has the same property. 

When this is so, it can be shown that the roots of the determinantal equation in \}s, 

j p-ya — A | = 0, 

are pure imaginaries, and that the invariant factors of the matrix /3_1a — \Jy are linear. 

As the proof is not long it may be given here (cf. ‘ Proc. Lond. Math. Soc.,’ XXXV., 

December 11, 1902, p. 380). 

Let \Js satisfy the determinantal equation 

a—P\Jj |=0; 

as the determinant \a \ is not zero, \fs cannot be zero. Then 2n quantities xx, x2, ..., 

whose aggregate is denoted by x, can be taken to satisfy the 2n linear equations 

(a— P\}s) x = 0. 

If x0 denote the row formed by the 2n quantities which are the conjugate complexes 

of those of x, we have in turn 

aXXy = \jsPxX 0, oixpc — ’xJ/'PXqX, olXqX — —yJrpX^X, 
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and, therefore, \fs0 being the conjugate complex of \\r 

Hence 
axx0 = — \Js0{3xx0. 

■7 + 7-) = 0, 
W w 

showing that + = 0> which proves that \f is a pure imaginary. 

Writing X for \(r~1, the equations above are the same as 

(a_1/3—X) x = 0 ; 

we prove that the invariant factors are linear by showing* that it is not possible 

to find a row of 2n quantities yx, y2, ..., such that 

For this would involve 
(a 1/3—X) y — x. 

(/3—a\)yx0 = aXX0, 

of which the right side is real, so that, X being a pure imaginary, either of these 

would be equal to 

(f3+a\)y0x; = (p + Z\)xy0 = (~/3 + a\)xy0, 

of which the last is zero in virtue of 

x = 0. 
4 

As axx0 is not zero; the assumed equation for y is impossible, and the invariant 

factors are linear. 

From this fact it follows that it is possible to find a matrix h such that 

h ]/3 Wi = iirx 0 0 0 

0 —i(TX 0 0 

0 0 Vjo 0 

0 0 0 —i<j2 

where 7, <r2 are real. Then the given differential equations, which are of the form 

if transformed by the linear substitution 

(ii, >h, 125 >h) = h (Xl5 Y15 X2, Ys). 

* See, for example, ‘ Proc. Camb. Phil. Soc.,’ XII. (1903), p. 65. 
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take the forms 
dXx dY1 dX2 

dt dt dt 

dY;■ 
of O+e) (x„ Y„ x2> x2), 

where <x denotes the matrix above written, with only diagonal elements ia-1, &c., 

and 0 is the matrix 
e = h-'p-'bh. 

The solutions of these equations are then expressed by 

(x„ Y„ x2, y2) = QO+e) (x,«, YA X2“, y2"), 

where Xd, Yd, are the initial values. Now, by a previously given formula, 

Q (<r + 0) = Q {a) Q [Q-1 (a-) 0Q (<r)], 

where il (a) has the simple form 

the solution is thereby expressed in powers of the small quantities occurring in 

The preceding work hafe wide applications; a particular case is that of the 

oscillations of a dynamical system about a state of steady motion, for which S', and 

0, is zero. 

[October 30, 1915.—To prevent misunderstanding, two remarks may be added to 

§16. The condition that the quadratic form ax2 should be positive, though sufficient, 

is not necessary in order that the roots of the determinantal equation (/— ^) = 0 

should be pure imaginaries. For instance, if a, b, u, v be real positive constants, and 

H be a quadratic form 

H = \a (yx-nx,)2 +%b (y2-mx1)2 - ^ xx2-x22, 

the motion about x1 = 0, x2 = 0, y1 = 0, y2 = 0 expressed by the equations 

= 3H/02/a, ijx = -9H/dxx, x2 = 3H/dy2, y2 = — 0H/0x2, 

is instantaneously stable if ah {m—n)2 > (u+v)2, the corresponding quartic equation 

having all its roots purely imaginary. This essentially is the case noticed by 

Thomson and Tait, ‘ Natural Philosophy,’ I., pp. 395, 398, where the illustration is 

that of a gyrostat balanced on gimbals. A simple illustration is also that of the 
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oscillations about steady motion of a weight suspended by a string of which the 

other end is made to describe uniformly a horizontal circle, in the case in which the 

string intersects the vertical drawn downwards from the centre of the circle described 

by its upper end. This motion is not, however, secularly stable when there is 

Dissipativity (Thomson and Tait, as above, p. 388); and, of course, not instantaneously 

stable, the roots of the corresponding quartic equation having real parts of which some 

are positive. 

A second remark relates to the generality of the form of the differential equations 

used in the text. Equations such as 

oL/ST\ 

dt\dxj 

ST 

dxr 
■ firiXi + 

8 x + §!_ + ^ = O PrnXn-r -V 4r, 

where /3rs is a function of ..., 

/3U ..., (3n in the form 

xn capable of expression in terms of' n functions 

; r‘ dxs dxr 

are included in this form, with a slight modification due to the presence of the 

Dissipativity F, and the supposed non-conservative forces Qr. For this it is only 

necessary to take 
L - 1 + + . • • + fi;,Xn 

it • SL • SL 
H = a?! — + ...+xn x-r- 

Sa1! oxn 

-V, 

■ —L, 

and to eliminate x1} xn, in the familiar way, from the n equations 

SL 

Then the final equations are 

X — 
SH 

°yr' 

SH SF ,n 

Vr dx„ S,A 

Particular illustrations are: (l) the equations of Thomson and Tait (as above), p. 392, 

for which the coefficients (3rs are constants. Then we may take /3r = crlxx-{-... +crnxn, 

where the constant coefficients crs are-in part arbitrary; (2) the equations of Lord 

Kelvin for liquid motions of ring-shaped solids, ‘ Collected Papers,’ IY. (1910), p. 106 ; 

(3) the equations of motion of a system relatively to a rotating frame (Lamb, ‘ Hydro- 

dynamics,’ third edition (1906), p. 294. Cf. Thomson and Tait,'as above, § 319, p. 307, 

and p. 319), for which we may take, if (f, y) be the co-ordinates of a point of the 

system relatively to the rotating frame, 

VOL. CCXVI.— A. 
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The equation of energy in general is at once seen to be 

—+20x 
dt dt rdxr ^rr’ 

so that if H be explicitly independent of the time, the forces Qr be absent, and F be 

a homogeneous quadratic function of ,xl5 x„, 

dH 

dt 
= —2F.] 

§ 17. The simplicity of the formulation depends on the fact that the invariant 

factors of /3_1a — \fs are linear. We have obtained this by assuming that the form ap2 

only vanishes when every element of p is zero. But the invariant factors may be 

linear when this is not so, and the roots of the determinantal equation are not pure 

imaginaries. For instance, take Hill’s equations for the motion of the moon, under 

certain limitations, 

'' i / ^ _o ^ y I I ny dt,^njt+[y,np = 0, |f + 2„i + ^ = 0. 

W riting 

these are the same as 

F = — — — fn2£c2+|- (X+ra/)2 +|- (Y —nx)2, 

dx _ 0F dX _ 9F dy _ 3F dY _ _ 3F 

dt 3X ’ dt dx ’ dt 0Y ’ dt dy' 

The so-called moon of no quadratures is obtained by variation from the solution 

expressed by 
x — cr, X = 0, y — 0, Y — no-, 

where a- is given by fx = 3wV3; this is a position of relative equilibrium. The 

matrix S- of the notation used above is zero ; the matrix a is 

j —8 n2 0 

" y -- - 

0 —n \ 

( 0 
1 n 0 1 

0 

n 4 n2 0 1 
\ 
\ —n 0 0 1 / 

In this case the quadratic form up2 is 

- 9 n%2 + (p2 + 2npz)2 + {np1 -p.tf 
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and vanishes when p1 = p^ — 0, p2 = — 2np3. But the roots of the determinantal 

equation 
| /3-1a — \Js | = 0 

are all different, and therefore the invariant factors are linear. 

The roots are 
yjr = ± ^{(28)4+lp, i/r = ± m{(28)4-lp, 

of which only two are pure imaginaries; thus not every disturbed orbit is periodic. 

§ 18. We pass on now to give the details of the application of the general method 

above explained to the computation of some particular cases. 

A very simple case may be first given, merely as an example of the notation and 

method, since the results, once obtained, are easily verified. 

Take the equations 
dx 

These may be written 

d (x, y) = 

dt 

or, say, 

where 

We have at once 

2 = —x cos t + y (l + sin t), 

2 rly = — x (l — sin t) + y cos t. 
■iA/L/ 

Jr / 0, 1 \ +jf / — cos t, sin t' 

\ —1, 0/ \ sin t, cos ty 

d ^ = {u + v) (x, y), 

(%, y), 

u _ i 

2( °’ 1 

V — 1, 0 

(2m)2 = / 0, 1 

U 0 

v = w / — cos t, sin t' 

sin t, cos t, 

0, 1\ = -1, 

-1, o 

Q(u) = l+wi + ^|i2 + |q^+..., 

= 1-2p«!+n^4--+2“p-^(^ 
= cos \t + / 0, 1 \ sin \t, 

— / cos -%t, 

L, 0, 

sin \t 

— sin cos \t, 

2 A 2 

and therefore 
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Wherefore 

This gives 
£2-1 (u) = /cos jft, — sin ^t\. 

vsin cos \t J 

12-1 (u) .v.Q (u) = i / cos \t, — sin \t \ / — cos t, sin t\ (u) 

vsm cos \t / \ sin t, cos t, 

= \ / — cos \t, sin ^t\ Q (u) 

sin |-t, cos \t/ 

-1’ °y 
0, 1/ 

Denoting this by ^o-, we find a2 — 1, and hence 

_ i 
- 2 

12 [12 1 (u) vQ (w)] = i +^+— (i^)2+ 3 j 

cll^t + ashwt, 

0 e 

it 

,-it 2-u, o.xx 2 (/ \ / e *% 0 \ (x°, y°), 

0, e3 

Thus the solution is 

{x, y) = Q{u+v) (as0, y°) = 

\ — sin ■g'h cos j%t/ \ 0, & 

x — x(>e~iJ cos j^t + y0^ sin \t, 

y — —x°e~it sin \t + y°e-t cos \t 

cos bt, sin brt 

if if / \ n At 

namely, 

The period of the coefficients in the original equation is 2tt. The functions cos D, 

sin i\t have only the period 4x. To bring the result into the form given by the 

general theory we may write 

x = x e ,0-,—5(1+i)t l l At (e"+1 )+y»eUl+i)t. (l - e""), 
2% 

y = —x°e~*{1+i)t. —.(eil-l)+y°ew+i)t. |(l+e-<‘), 

the so-called characteristic exponents being 

±Hi+0- 
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19. We now consider cases of the equations 

d 
dT(X,Y)=-±/l, —C\(X,Y); 

“I 

these are derivable from the equation 

by taking 

leading to 

^~+(n2+^)x = 0 

X = i£e'nt ~~inx), Y = e~mt + inx), t — 2it, £ 

x = — (Xe-*,t-Ye,'"<). 
n 

= e, 

As we wish particularly to illustrate the method of obtaining the characteristic 

exponents from the present point of view, we take first a case in which explicit terms 

in t arise early in the method of successive approximation. We take namely n — 1, 

and suppose 

— = Ah + 2Xk1 cos 21 + 2X2Jc2 cos 4£+..., 
4 

= Xh + Xk1w1 + X2k2w2 + ..., 

where A is small, and wr is used to denote £r + £ r. 

Denoting by-<£, our differential equations are 

i&l) = u(x,Y), 
ClT 

where 

u — / -(/>, 

\-tf~1, 0/ 

The coefficients in these equations have period 2-n-i ; by what we have previously 

shown (§§ 14, 15), the solution is of the form 

(X, Y) = Ph /e~qr, 0 Xfr1 (X°, Y°), 

V 0, eqT) 

where P is a matrix whose elejnents have the period 2iri, h is a matrix of constants, 

and q is the constant which we particularly desire to find. As 

x — i(Xe~lt—Ye1*), 

this corresponds to characteristic factors Q*l{1+2q)t for the original equation in t, whose 

coefficients have period ?r. The quantity q is to be found by determining the terms in 
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t in the solution of the (X, Y) equations, and forming from this, after putting r — 0, 

a determinantal equation (§ 14). 

We are to calculate in turn Qu, QuQu, &c., and arrange the result according to 

powers of X. First we have 
Qu = /«!, b\ , 

where 
\C1> ^1/ 

Cti = — <p dr, />! = <j)£ dr, 
Jo 

cx = — i dr, dx — j cp dT ; 

Jo Jo 

thus, as (f> is unaltered by changing the sign of t, by can be obtained from cx by 

changing the sign of t, and similarly dy from av This we denote by writing 

Then 
by = c'y, dy — Ct!y. 

uQu = / -<p, i<p\ /cq, c'A, 

— £ 0 ,cl5 ct lx 

and hence 

where 

■ — <pc'y + i<pa\ \ , 

-f l(pay + (pcy, — f“Vc'i + 0a,1/ 

QwQw = /a2, c'A , 

v C2, a g/ 

c'2 = = I (p{-ay + ^Cy)dr, 
Jo 

C2 = I + a'2 = 
Jo 

0(-c'i + ^a'i)dT, 
I 

r 

<f>(a\-£-1c'y)dT, 

so that a'2 is obtained from ct2 by changing the sign of r throughout, and similarly c'2 

from c2. In general, in passing from a term of ii (u) involving r integrations to one 

involving (r+l) integrations, we shall have a law expressible by 

Ar+1 — (p (—Ar+£Cr) dr, Cr+1 — £ V ( — A,. + (,(Jr) dT, 

and the new term, like that from which it is derived, will be of the form 
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where A'r+1 is derived from Ar+1 by change of the sign of r, and similarly C'r+1 from 

Cr+, 
Thus, when in Q (u) we pick out the coefficient of t, as it occurs explicitly, 

independently of its occurrence in £ and in this coefficient put - — 0, we shall obtain 

a series of the form 
a i, —yA + / ot2, —y2\ + ..., 

7u — “i/ \y2, — a2/ 

where the first of these comes from Qu and involves terms in X and higher powers, 

the second comes from QuQu and involves terms in X2 and higher powers, and so on. 

And the equation for q will be of the form 

namely, 

a1 + a2+q, — yi—y2— ... - 0, 

yi+y*+"-> - ai~ a2~ •••— q 

q2 — (oq + a2 + ... — (y! + y2 + ... )\ 

Further, if the part of Qu which is independent of explicit powers of -, consisting 

of elements which are polynomials in f, £_1 and periodic with period ri, be denoted 

by Pj, and similarly the periodic part of QuQa be denoted by P2, &c., then the 

periodic matrix P above spoken of will be 

P = 1+P1 + P2+.... 

Proceeding to the computation, retain first only to terms in X. Then 

CLX = — j <p dr = —Xhi—Xkx{^—C, 1), 
Jo 

c, = - U-^dr = - fV^XA + XMt + r1)]^, 
Jo Jo 

= \h (?"-!) +^I(iAA_r). 

Hence 
oq = — \tl, yj = —Xlc, 

and q is given by 
q‘ = \‘(h°-k°). 

In the case when the differential equation is that considered by Hill, this gives at 

once a very near approximation, as he remarks, being equivalent to his formula 

c2 = i + kv-i)2-^2}* 

(Hill’s ‘ Collect. Works,’ I., p. 260). 
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If next we retain as far as X3, we have from 

■ ^ = x.4+xz-1(ri+^+x2^(r2+r)+x^3(r3+f3) 

— ax = (p dr 
Jo 

= \hr + \Jcx (— i ~l + f) + ^X2k2 (— f ~2+ £2) + g~A3&3 (— + f3), 

Cx = - V 
Jo 

7. (L 
- — 2 

= Xfc (r1 -1) + x^ (-i-r) + \% ( V +1- 
r3 

3 

A r4,i r 
3lT+4_Y 

Hence 

-«i + fci 

r1 

Thus 

— \h (r + 1 — £) + Afc (-— + 2 H ) + ^2 ( — b11~ K ) + X3&3 ( ~ ]T> + ^ — g 
P-2 c2 
S , 2 P i 

/ P-3 r3, f t 

0 (-Gfi + fCj) 

= A2 {A2 (t+i -£)+A4 K-HK^-i+K-n+V (-K-2-r-n2+K2)} 

+A3{M’2(rr2+K-2-ri+ff+n2+K2-f) 

+^(-K-*-Trl+K-1+f-f+K>-T^)}. 
This gives 

a2 = j\/> (-(li + fcjdr 

= ^{/A^ + T+l-^ + M^-T^-f^-T + i + K-K2) 

+h2(\r-h2-i-bi2+u2)} 

+A3{^2(-K-2-tr2+ri-t+K+M2-K3) 

+tt(ir3+Tri+K-i+|r-i-^+K2-W3+K3)}. 
Similarly, 

Co = (—flj + fa) cZt 
Jo 

- A’ {A*(-Tf-,-«-'-T + 2)+W, (-J^'-K-' + f-' + fr + J-f) 
+y(K-8+n-,+4-'-f+if-Tm 

+ A3 {hJc2 (— tV£~3+i£ ~2+fr+1+vf—if—K2) 

+^(K-HM-2+*r2-irl-T-i+K-M2+K2)}. 

Forming now — a2+fc2 we obtain 

A2 {^(-|t2-2t-3-t^+3^) + M1 (W1 + f"1 + T + i+|rf-f-KS) 

+ ^2(-M-2+lT2+T+i-l^f-M2)} 
+A3{A4(iTr2+15¥r2-K-1+t+K+M+M2-K2-K3) 

+ lcxko (— iVf ”—-rH_1 — “1 — ft —§■—n + ^+— 6rf3+weT3)} • 
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To find 

a3 = </> (— a, + £c2) cZt, c3 = (—«.,+ £c2) dr 
Jo Jo 

up to A3 it is sufficient to take <p = A [_h + hl (£_1 + £)] 5 so we obtain 

<p (—a2 + £c2) 

= A3 {hs{-^T2-2r-3-rf+3f) 

+ h%{-±T2t1-M"1-2ri + i-M-W“4f-T£a+ir) 

+mx2 (M^+^^+Tr^K^+ir+ST+i+Tf-K+rr-K3) 

+V(-M-8+M-1+Tri+K-1-t+M+K+Vf-tfa-W8+?a). 
and hence 

Oa j (p ( — a2 + fr2) dr 
Jo 

=• A3A3 ( — -g-r3 r2 3t 4 + 4£) 

+ \3h% [(iT2 + |T + |)ri + |-T-f+(-lr2 + iT-|)^(-iT + f)f] 

+ A3/J^2 (-It-*) r2+(-r-f) rH^ + f^ + ir + ^+^-V-) t 

+ if-i)t2-K3 

+ ^3[«-3 + (-iT2-2r-V-) ri-fT + |- + (|r2-lr + ^) {-%? + (-& + &) ?\ 

Similarly, 

Co = I f VJ (-®a+foj) dr 
Jo 

= \W[(jT!+3T+6)i'-' + (-i-T! + 3T-6)] 

+ X«1 [(ir’ + T + f) 0S-K-1 + (-iT3-iT2-4T-f) + (-r + i)g 

+ X3A^[(-Jt-M) f-3-i(T+l) f-3 + (-JT3-4T-¥) f-‘ 

. +iT2-§T + W-+Ti-4-K2] 

+ X*i,*[*r + (-^-|r-|»)f-'+|{->+*V+iT'+VT+*-|f+(-jT+*) n 

Picking out now the terms in r, putting therein £ = 1, and using the notation 

previously explained, we have, up to A3, 

15 a.1 = —A h, y1 = —A k 

a2 = A2 (ha—2hJcl —jfki) +A3(PA), y2 = A2 ( — 2h2 + hJc1) +A3 {ihh2-l\k,)t 

a,3 = A3 (- 4/r3 4- 6h% + 2M12-1/T13), y3 = A3(6A3-4/i^1~-139-M12+1^i3)- 

VOL. CCXVI.-A. 2 B 
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Hence 

— (ax + a2 + a3 + yx + y2 + y3) 

= \(h + kl) + \a(ha + hk1+%k*)+\*{-2h*-2h%+^hk1a+i§k13-$hb2-bklka) 
and 

— («! + 0-2 + a3) +71 + 72 + 73 

= A (h-hy) + A2 (— 37^ + 3 h^+n*) +A^10A3-10^1--2#M12+|M2+f|^13-^14). 

The product of these gives the value of q\ namely, 

(f = A2 (/z2-^2) -A% (2A8-3^8) +A4 [5 (A8-^3)2 - W-2^4]. 

This agrees with the value found above by a quite different method (§ 4). 

The matrix of coefficients of r, after £ has been replaced by 1, is of the form 

and its square is (a2—y2) times the matrix unity. The matrix Q0W (u) of § 14 is thus 

or 

Q0w(u) = 1 + A0w+^q2w2+ ~ q2A0wz+ ~ gV+ 
O ! 4 1 

/C + aS, —yS \, 

yS, C —aS 

where C = ch(qw), S = - sh (qw). From this it is easily seen that for the calculation of 

q the method we have followed is less laborious than to use the equation 

| Qo" (^) — p | = 0. 

The differential equation from which we have started is, to terms in h2, if we 

suppose A = 1, 
,72,,. 

+ (l+4/?. + 8&! cos 2£ + 8Jc2 cos 4t)x = 0. 

If we compare this writh the form considered by Hill (‘ Coll. Works,’ I., pp. 246, 

268), we have, with his numerical values, 

h = 0-03971 09848 99146, 

/q = -0-01426 10046 86726, 

l2 = 0-00009 58094 99389. 
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§ 20. Consider now briefly the case of the equations 

Jbx’Y> = r\(x,Y), 

-rn, i > 

in which n — 2. We suppose 

4n 
= \h + \klwl + \2k2iVo+ ..., = say, 

wv = wr+r, 

As in the case of n = 1, 

u = / -<t>, in4> 

\—£-n<p, <p 

Qw = /&i, c j\, 

where 

and, for n = 2, 

a, = — cpdr = + 

These give 

0 (-Ol + f’Ci) 

= XW(r + $-&>) +XJM1 [(r-i) ?--+ (t+2) f-fC-JC] 

+W(-K-J+t-^+2 C-K3)- 

As before 

QuQu — /a2, c'A , 

s, ^2) Ct 2/ 

where 

«2 = I ^ (-«■! + faCx) dr 

= A%2(lT3 + lr-K2 + i) +X2M1(-Tri-K-1 + l + rf+^-K2-K3) 

+x%» (K-2+fr+1 - u + f-K3) 
2 B 2 
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and 

C2 

+x2*12(K-‘-fr2+-K •i-tf). 

Picking out the coefficients of r in these, and putting therein f = 1, we have 

— X/g — ““X ^9, 

a2 = ^\2h2 + §\2Jc2, 

and hence, to X3, 

u2> 

n-i ) 72— — X7r—f-X2/^ + 2X-&C, 

= (ai + a-i)2 ~~ (71 + 7a)2 = 
X2 

-[x2( )]3, 

= \2h2-\3h{h2+%Jc2). 

This agrees with a result previously found (§ 6), but fails to give the first term in 

q- if h — 0. When this is so it is necessary to take account of the terms in X3. By 

taking terms in X3 in a1} cu we only obtain terms in <p (— c^ + ^Cj) which involve X4. 

But the terms in X2 in ax, cx which are written down give terms in X3 in <p ( — a1 + ^2c1), 

which are 

x2Ma (ir2+Tr2-i+K2-K4)+\%** ( ■3+K_1- 
4 ■ 3 ■ r^-rf+K3- -r-K4), 

and hence the additional terms m a 

x3M2(-M-2-tr2-|T+i+K2-K4) 
+ X'^jp, (;V«f tr1 —3t +T3t' ■3-n3- ' 3t 4+ 3 )> 

and the additional terms in c2 

^(-i-r4-K-4+ir2+tr H- 
c2 

4l>3Z. X. /1JP-5 7 m , 13? ? 2y2_C>4\ 
+ A hb l(id — T2& +3t + T2a + Tt +"4"t —v(, —3<, —X5/- 

In finding the terms in X3 in 

This gives for <p ( — a2+£2c2), 

J 1 , 2 3. 1 1 Hi 
f— 2T — ^ 4 + 4t ~2"TS J 

a 3) u3> it is sufficient to retain the terms X2 in a., and c„. 

+xWMf->(-!i?-^+*)-l+f(-i*,-iT-4)+£’(-$T+¥)+F(-iT+*)} 

,\W + (-Jr+V)-W+f (-Jr + V)-*?} 

+XV{-K-,-J-,(|r+«)+» + f(|T-|f);W+f(2r-«-«*}. 
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For a3 — j <p (— a2+ £Jc2) dr, this leads to 
Jo 

A’7r { — <b"'—|t"—|t—|-+£2 (— ir+|-)} 

+ X’71^ jf -1 (ir* + |r + -H-) - |r —V + C - it2 - 4t - f) 

+ f(-«T +¥)+c(-f+ * 

+ X 7( /c, ) - f -( JfT T | 7 ) + 5 1 - | T-- J,? T - 5H 2 + f ( - | T i- ) 

+ X*V{Af-* + f-‘(|T + «) + ST-f + f(|T-#) + |f» + {*(|T-*)-|f}. 

The terms in c3 — | f ~Q> (— T £2c2) are similarly 
•1 0 

\%»{rS (|-TS + |T)+|T-iT3} 

+ 1 ■ 6T" ' g + („ ) i 3 (, + ( 1 (It" + -!}t + V ) 

-¥r-|T2 + ¥r+|(-iT + H 

+XW {f-* (-§ -*)+%-*+{-’ (tr+V-) + t-' (tr-V) 

-l9-4?T+f(-|T+V-)-ir 

+X*v (-|t+«) 

+tff+J#T+f(2T-f)-ir}. 

It is easy to see that the terms in A3 in a1} cx are respectively 

ix%(r3-n and \%ar5-£+i), 

neither of which contains - Thus up to A3 we have, in the preceding notation 

= —A h, yi — —XJk2, 

a2 =^Xa(ha+%k1a)-\s(hka + ik1k2)t y-> = —A2 (h2 + §hkx — 2k2) + yX:ihk2, 

Ot 3 = - A3/?3 - f A 3h% - -%S-X 3hk2 + ^\%3, y3 = A3/F + ^A%%! - ^X3hk2 + -^A3^3. 

Thus 

ai + a2 + ai{ = -A/i + |A2(/?2 + P12) + X3(-/r3-|^1-Wi2 + ¥^3-^^-pA> 

yi + y2 + y3 = A2 (-h2-%hk1 + 2k2-k2) + Xs {Ki + ~7£h%-^hk}2 + ^-k1s + ihQ. 
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This gives 
qi — (ai + a2 + a3)‘ — (yi + y3 + y3)' 

= X2h2-X3h (h2 + %k2) + \* ^hi+^h%2-^-k1i-k22+U2k2) 

as far as terms in X4. This result is for the equation 

d2x 

wherein n — 2 and 

V' 

dt2 
+ (n2 + \k) x = 0, 

w — Xh,+ Xkx (£ 1 + £) + X“ka(£ 2+f“)+... 
o 

and agrees with the result previously found (§6) when in this last we replace 

h, kx, k2 respectively by 2h, 2ku 2k2, as is necessary, taking account of the difference 

of notation for ^ in the two cases. By an independent investigation for the case 

when 

'A _ xA1+xA1(ri+f)+x%2+x2A2(r2+r)+x%3+^3(r3+^)+... 

we have found (above, p. 142), 

cf = h2X2-}h {h2 + %k12-2h2) X3 

+ X4 {(W+W-h2)2 + h1i + ^h1%a-2h1% + 2hA~(h-^ha)a} + ..., 

which, replacing h by h1 + h.2X + h3X2, arises from the preceding result. 

§ 21. Now consider the equations 

(X, Y) = u (X, Y), 

where 

A 
(It 

u = / -<p, tn<p' 

\ —<p 

and n is not 1 or 2, but is an integer if u is a periodic matrix. 

With 
<p — Xh + Xky (£-1 + £ ) + X'A> + +••• 

we have, retaining only to X2, 

a, = — 

c, = 

(jj dr = -xhr + Xkx (f 1 - £) + f 2—D, 

£-*+<&■ = - [x^-”+x^1(r»-i+r”+i)+x2A2(r”-2+r”+2)jdr 

2 n = l-u(f-D+ui^ + LA _ +-£A! _ „ 
n \n + l n — l n2—lj \n-\-2 n — 2 n~ — 4 
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which lead to 

c/)(—a1 + £nc1) = \2h? (r + W 
n 

* \2Li, ) p-i i n~ n 1\ , ? ( , ri2 + n—-1\ Q 1 z,u 

+x*Mf d-^n)UdT+ 
2 n 

r- 

+xii1a U QQ f-’+W + ~r r- -|V r-'-VV c+i 
n+1 rr—1 n—1 n— 1 mr—\ 

so that 

«2 = 0(-Oi + fnC1)dr 

X%2(^t2+- 
n n" 

•+X%i1{-?-'(T+-^±A)+dT+-fLd 
l \ n(w+l)/ \ n(n— 1 

+ T-1 
r- 

^n+l 

1 ■ n(n — l) n2— 1 n(n+l)j 

+ A2£f 
n 

2(n+l) 

+ 

c_2 , 2^ 
<> + “i-7 T — 

n —1 

n2(n2 — 5) 

2 n 2n __ ?n— 1_^ 'v_ fn+1 l 

2(n — l)S (n — l)(n2— l) (w+1) (n2—1) j 

Pn + 1 

Similarly, 

v=*<t>{-(h+£nci) 
Jo 

= x%Jl-^-^C + -s-T' 
n n n n 

, . 2,7 f f-*-1/ w2—2»i-l\ f_B+1/ , n2+2n—1 

xt n + l\ n(rH-l)/ n —IV n(n— l) 

r1 2wr f , 8n2 
+ --5—r- - + 

n n2— 1 n (n2—l)‘‘ 

+ \%2 
n 

(n+l) (n + 2) 
^_„_2 - £_” 

71 

717— 1 (n— l) (n— 2) 

+ 

-n + 2 

2ri ci 2» fl 8 
f --r—r<> + 

n — 1 ?r — 1 n— 4 

Thus we have, so far as terms in A2, 

a! = —\h, 

A 2h2 
CL.) = 

n 
+ A2£, 

yi = 0, 

2 2w _ 2A2A2 4A2M-^ 

V-l’ 7a_ n n2-l ' 
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and so, to this approximation, 

to — cti + ot-2 — —Aft-+X . —-—— • 
n n—l 

The characteristic factor is then A”+2<z)i, the differential equation being 

72 

—A + (n2 + AnXh + 8ftA&j cos 21 + 8n\2b, cos 4£ +...) x — 0, 
dt2 

Thus q is always real, when A is small enough, provided lzx is not zero, even if h be 

zero. The result agrees with that found in § 6 for n = 3, if allowance be made for 

the change of notation. 

[.December 1, 1915.—-Consider the differential equation differing from that just 

preceding only by the substitution of H for Ah in the term inXh of the coefficient of 

x, where H is supposed to be of the form Xh1 + X2h2+X3h3+— The computation of q2 

proceeds then exactly as before. The formulae for ax + a2 + a3, yi + y2 + y3, given above, 

p. 178, substituting H for Ah, show that, for n = 1, q~ is then of the form 

(H — aj) (H — a2) Q, wherein Q is a power series in H, A^1? A2k2, ..., reducing to 1 when 

H = 0, A = 0, and 

ai = -4-»2+ (W-hh) x3+..., 

a2 - ^a-PA2-(W-hh)x3+ ••• • 

The value of cf is positive, and the motion represented by the differential equation 

is stable, so long as H does not lie between these values. Similarly for n = 2, from 

the formulae at the bottom of p. 181, the range in which q2 is negative is when H lies 

between 
-(PC-Oa2 and {W-h) A2, 

these being accurate as far as A3. Unless f h2 < h2 < X^-h2, these limits are of 

opposite sign, and include H = 0. This is the result given on p. 142 (save for a slight 

difference of notation). For n = 3, an analogous computation shows that q2 is positive 

except when H is between 

PA2-PA3 and pA2 + PU, 

where 

P = fU3—3U4 +A 

and this range does not include H = 0 unless = 0. It would appear, from the 

formula above (p. 184), that the corresponding interval for greater integer values of n 

is between two quantities of the forms 

2 n 

n~ 
&A2+Pa3, 

9/ n 

n2— 1 
A2a2+Qa''. 
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Mr. E. Lindsay Inge, of Trinity College, Cambridge, following up the method of 

his paper referred to above (footnote, p. 13 4), has calculated numerical results for the 

case when Jcu Jc2, ... have the values considered by C4. W. Hill.] 

PART III. 

§ 22. I desire to add to the foregoing some very incomplete remarks in regard to a 

generalisation of which the work appears to be capable. The most important general 

result obtained is that when u is a periodic matrix, the matrix 12 (u) can be expressed 

as a periodic matrix P multiplied into a matrix involving quantities of the form eAT. 

One direction in which this result can be amplified is by extending the assumption 

we have made that the matrix Q™ (u) has linear invariant factors. It is well enough 

understood what is the character of the modifications thereby introduced. A more 

important generalisation appears to be that the factorisation of the matrix 12 (u) 

does not in fact require that u be a periodic matrix. As an indication of the theorem 

consider an equation 
/72/y, 
— +cr2x = x (aeiKt + beiKt + ce11*1), 
dt2 

in which the constants k, A, /x are such that /c + A + /x = 0, but the ratio of two of them 

at least is irrational. For example, we might have k = v2 + l, u= — ^2+1, 

/j. — — 2. Then, assuming that there exists no identity of the form 

Cite + /3A + yfjL + 2cr = 0, 

in which a, 8, y are positive integers, the equation would seem to have a solution of 

the form 
x = e,2fX, 

where X is a series of positive and negative integral powers of elKt, elM, eiat, which 

may be arranged as a power series in a, b, c, and q is a series of the form 

q = ar + Kxabc + A2a2b2c2+ ..., 

in which A1; A2, ... are constants. The differential equation has not periodic 

coefficients. 

In a paper already far too often referred to, ‘ Proc. Lond. Math. Soc.,’ XXXT., 

1902, p. 353 et seq., replacing the variable there called t by eT or Q it is shown 

(p. 365) for the equation system 

~ = (A + t;V)x, = ux, say, 
d-r 

in which A is a matrix of constants, and V a series of positive integral powers of C, 

that there is a factorisation of the matrix 12 (u), in the form P12(<^)y, where P is a 

2 c VOL. COXVI.-A. 
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matrix whose elements are power series in £, and Q(<f>) is calculated in regard tor 

from a matrix 

</. = / c.Jili,ea(tli 

while y is a matrix of constants. Here 6,, 02, ..., c12, c13, ... depend solely on the 

invariant factors of the matrix A. 

This result is obtained from the form of the matrix u as expressible by powers of £, 

without reference to the question of periodicity. It would seem that the argument 

there employed is capable of modification, the integrations being performed in regard 

to t (which is log t of the paper referred to), so as to lead to the general theorem 

here contemplated. 

presented 
/ JAN. WW 
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§ !• In 1901 the development of electrical traction in West London rendered it 

clear that unless conditions altered in an unexpected direction, no further magnetic 

records from Kew Observatory would be sufficiently free from artificial disturbances 

to be an altogether satisfactory medium for the minute study of phenomena such as 

the regular diurnal variation. The time seemed to have come for taking stock of the 

records obtained. The measurement of magnetic curves formed no regular part of 

the work at Kew Observatory until 1890. Prior to that date the Annual Reports 

contained only a summary of the results of the absolute observations. Since 1890 

the programme of work has included the measurement of the magnetic curves for 

5 “quiet” days a month. Until a few years ago these days were selected at 

Greenwich by the Astronomer Royal. Now they are selected under international 

auspices at De Bilt, the central station of the Meteorological Institute of the 

Netherlands. Since Kew Observatory was transferred to the Meteorological Office, 

diurnal inequalities have been published for each month of the year for I) 

(declination) and TI (horizontal force). Previously the inequalities published were 

VOL. CCXVI.-A 542. 2 D [Published Maroli 2S, 1916. 
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188 DR. C. CHKEE: DISCUSSION OF KEW MAGNETIC DATA 

confined to the year, winter (October to March) and summer (April to September). 

Vertical force (V) and inclination (I) suffer more than D and H from artificial electric 

currents, and no inequalities have been published for them since 1901. 

It was decided to begin by analysing the measurements that had already been 

made of the “ quiet ” day curves for an eleven-year period, 1890 to 1900. The 

necessary labour was almost entirely arithmetical, and it was completed with the aid 

of the Observatory staff without extraneous financial assistance. The results were 

embodied in a paper# published in 1903. 

It had gradually been recognised that diurnal variations derived from quiet days 

are not identical with those derived from all days, or from all days but those of large 

disturbance. It became increasingly obvious that the Kew records would not be 

fully utilised until the study was extended to other than quiet days. The 

magnitude of the task was not at first fully realised, and the original programme 

seems to have embraced all the accumulated data, limiting the enquiry however in 

the first instance to the declination. At all events the list of Government Grants for 

1903 to 1904 includes one of £82 10s. “to work up declination (magnetic) results 

obtained at Kew from 1857 to 1900. ' The work was practically confined to the 

11 years 1890 to 1900, and the grant was exhausted before it was completed. 

The curves were divided into “ordinary ” and “disturbed. ’ An ordinary day was 

one in which the general trend of the diurnal variation was clearly recognisable, so 

that when the trace was oscillatory it could be fairly replaced by a freehand pencil 

curve of moderate curvature. 

It had been the practice, when sensible oscillations occurred on a selected quiet 

day, to smooth the curve, replacing it by a pencil trace, so the procedure adopted 

with the ordinary day curves was no innovation. Smoothing was, however, done much 

more extensively than had been the case with quiet curves, and in some instances it 

called for considerable exercise of judgment. To secure uniformity, it was always 

done by myself. Disturbed days were those in which there was so much irregularity 

that smoothing appeared too arbitrary a process. To a certain extent, no doubt, the 

allotment of a day to the disturbed list depended on the judge’s condition, both 

physical and mental, at the moment. The attributes of a disturbed day were 

practically those of “ character ” 2 days under the international scheme 0 (quiet), 

1 (moderately disturbed), and 2 (highly disturbed); and it is only necessary to consult 

the returns from similarly situated stations to recognise the importance of the 

personal element in the selection. The choice, in the present case, it should be 

remembered, was based entirely on the D curves. The total number of days assigned 

to the disturbed list in the 11 years was 209, or an average of 19 a year. The 

number varied, however, from 6 in 1890 to 39 in 1896. The results from the ordinary 

day D curves, excluding a few that were imperfect, were discussed in a paper! 

* ‘ Phil. Trans.,’ A, vol. 202, p. 335. 

f ‘ Phil. Trans.,’ A, vol. 208, p. 205. 
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published in 1908. This paper was reprinted with the addition of an Appendix in 

the ‘Collected Researches’ of the National Physical Laboratory, vol. 5, 1909. The 

Appendix contains a list of the 209 disturbed days. 

In 1908-9 a further grant of £100 from the Government Grant Committee enabled 

the measurement to be commenced of all the H and V curves for the period 1890 to 

1900. A difficulty at once presented itself. While some of the 209 days, which had 

been classified as disturbed from consideration of the D curves alone, were quite 

ordinary so far as the II curves were concerned, other days which had been treated 

as ordinary from the point of view of the D curves were conspicuously disturbed 

from the point of view of the IT curves. V is a much less disturbed element at Kew 

than I) or H, and many of the V curves from the 209 days classified as disturbed 

could have been smoothed satisfactorily. The decision reached was to regard the 

209 days already selected as representing disturbed conditions for all three elements. 

Diurnal inequalities were derived from these, and these only, as representative of 

disturbed conditions. In their case the curves were read absolutely unsmoothed, at 

exact hours G.M.T. Notwithstanding the large irregularities in individual days, 

diurnal inequalities were obtained of a fairly regular character.# 

§ 2. Coming now to ordinary days, it was decided in the case of H to set aside the 

209 days already mentioned, and in addition all days when the TI curves were too 

disturbed to smooth, and to derive inequalities from the remainder. These were 

smoothed, when it seemed expedient, exactly in the same way as the D curves had 

been. In the case of V a different procedure was adopted. There was no single 

month in which a large majority of the curves could not be satisfactorily used 

without any smoothing. This being so, it seemed best to dispense with smoothing— 

which everyone admits is open to certain criticisms, while some dispute its necessity— 

though that entailed omitting a considerable number of days additional to the 209. 

The discussion of D results hardly comes under the present memoir, but D enters 

with H into such quantities as the north and west components (N and W), which of 

necessity are treated here. Thus particulars of the number of days’ traces actually 

used for the ordinary day D inequalities concern us as well as the corresponding 

data for D and H. It is simpler to enumerate the days not used than those used. 

This is done for individual years in Table I., and for the 12 months of the year 

in Table II. The total number of days in the 11 years, it should be remembered, 

was 4017. 

Natural disturbance was not the sole cause of omission of days. A feAv of the 

days—10 in the case of H, 19 in the case of D and V—were omitted owing to 

imperfections in the records. One cause of imperfection, stoppage of the clock, 

affected the three elements alike. Another cause, insufficient gas suppfy, affected all 

to some extent, but while one trace might be invisible another might be measurable. 

* ‘Phil. Trans.,’ A, vol. 210, p. 271, and ‘Collected Researches, National Physical Laboratory,’ vol. 7, 

p. 1. 

2 d 2 
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The H optical arrangements are the best, and it suffered least. The erection in 1892 

of a new upper story to the Observatory, with iron girders, produced irregularities 

on several days, which could not be satisfactorily dealt with. There were various 

other discontinuities associated with movement of iron in the building, or with 

changes of sensitiveness in the vertical force magnetograph, which rendered the 

omission of certain days expedient. But, everything considered, the number of days’ 

trace which could not be utilised was wonderfully small, a fact reflecting credit on 

the staff, especially Mr. T. W. Bakeb, who had charge of the magnetic instruments 

during the whole period concerned. It was judged important to have a complete set 

of values of the absolute daily range (maximum less minimum) during the period. 

The loss of a good many hours’ trace necessarily introduces some uncertainty into the 

daily range, because one at least of the extreme values might fall during the time 

lost; but in many cases one can be reasonably sure that the range deduced from the 

part of the trace that is complete is the full range, or at least very approximately so. 

In all doubtful cases recourse was had to the corresponding Falmouth curves, which 

were kindly lent by Mr. E. Kitto, then Superintendent of Falmouth Observatory. 

In a few cases, while the ranges accepted were derived essentially from the Kew 

curves, a small correction was applied which was based on a comparison of the Kew 

and Falmouth curves. In a few other instances the range accepted was derived from 

the Falmouth curve alone. Experience showed that the agreement between Kew 

and Falmouth ranges was usually so close that the uncertainty thus introduced into 

monthly or similar mean values must be wholly negligible. Finally, there were two 

or three cases in which one of the traces during a magnetic storm had gone beyond 

the limits of registration at the same time both at Kew and Falmouth, or the latter 

trace was otherwise incomplete. In such a case there was nothing for it but to take 

the edge of the sheet as representing one of the extreme values. On one occasion, 

February 14, 1892, the estimate thus made of the D range was not impossibly a very 

appreciable underestimate, though hardly to the extent of exercising an effect of 

more than a few tenths of a minute in the monthly mean. 

The number of days omitted from the ordinary day diurnal inequalities through 

imperfections of the trace was so small that we shall not be far wrong if we disregard 

them when comparing different months or years in Tables I. and II. The curves D, 

H or Y, of the same year were dealt with at one time, while a considerable interval 

sometimes intervened between the consideration of two successive years. Thus 

Table II. is probably a more reliable index than Table I. to the fluctuation of dis¬ 

turbance in individual elements. Since, however, the D, H and Y curves were 

considered at widely different times, when their indications in Table I. agree the 

result may be accepted with some confidence. The two quietest years were 

undoubtedly 1890 and 1900, the years of lowest sunspot frequency. The last seven 

months of 1900 contained no single day considered disturbed for any of the elements, 

and may be accepted as the quietest period of the 11 years. The year of largest 
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sunspot frequency, 1893, though showing very large regular diurnal variations, was 

decidedly quieter than the adjacent years. 

Table I.—Number of Days not included in “ Ordinary.” 

Element. 1890. 1891. 1892. 1893. 1894. 1895. 1896. 1897. 1898. 1899. 1900.' 11 
- years. 

D 7 26 31 17 21 21 41 16 19 21 .8 I 228 
H 6 25 36 14 26 29 45 19 21 22 9 252 
V 14 48 53 36 36 39 54 26 28 21 11 1 366 

While 1892 and 1894 contained most of the outstanding magnetic storms, 1896 

was remarkable for the persistence of disturbed conditions. A point to be 

remembered is that it is easier to recognise the general trend of the regular diurnal 

variation when the range is large than when it is small. Thus a disturbance 

sufficient to mask the regular diurnal variation when least—i.e., at midwinter, in 

sunspot minimum—might prove no serious obstacle to smoothing curves at mid¬ 

summer near sunspot maximum. Making all due allowance for the increased 

amplitude of the regular diurnal variation in summer, Table II. shows clearly that 

the annual variation of disturbance has a well marked double period, with minima 

at midwinter and midsummer, and maxima in March (or late February) and October. 

The maximum in Spring is the more prominent of the two. 

Table II.—Number of Days not included in “ Ordinary.” 
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D 22 26 32 17 18 7 12 11 19 30 20 14 
H 26 26 34 19 18 8 13 18 21 29 24 16 
V 40 42 45 31 28 19 23 25 30 37 26 20 

The basis on which the curves were treated was largely determined by the fact 

that the D, H and V curves had to be considered at different times. If a careful 

consideration of the curves from all three elements had preceded all measurements, 

a common selection of ordinary days would probably have been made. As it is, 

a little more disturbance enters into the ordinary day H inequality than into that 

for V, and a little more into the D inequality than into that for H. This is most to be 

regretted perhaps in relation to the derived inequalities. The north component (N) 

and west component (W) inequalities depend on both D and IT, while the total force 

(T) and inclination (I) inequalities depend on H and . Lhese inequalities, not 



192 DR. C. CHREE: DISCUSSION OF IvEW MAGNETIC DATA 

improbably, differ slightly from what they would have been if derived from magneto¬ 

graphs recording N, W, T and I directly. The differences, however, cannot be 

serious, because all the largest disturbances naturally figured on each of the three 

lists. 

§ 3. The full publication of magnetic data normally includes tables of the hourly 

values of three elements in absolute measure. Besides hourly measurements of the 

curves, this entails for each element a knowledge of the scale value and of the base 

value for each day. When a temperature correction is necessary, and the tempera¬ 

ture alters sensibly throughout the day, it entails further a knowledge of the 

temperature coefficient and measurements of the temperature records at each hour. 

Two months’ hourly values of a single element in ordinary type fill a quarto page. 

Thus full publication of 11 years’ data would have filled 198 quarto pages simply with 

the hourly values of D, H and V. As there was no prospect of publication on this 

scale, and economy of effort was important, no more was done than was essential for 

the immediate object in view. So long as one can assume the base value constant 

for the whole of each day, or can adequately allow for its fluctuation by means of a 

non-cyclic correction, its value is immaterial, so far as the diurnal inequality is 

concerned. For simplicity, consider the case where no temperature correction is 

required. If the scale value can be treated as constant for the whole of a month, 

as was the case at Kew with rare exceptions, all that is necessary is to take the 

hourly measurements in millimetres, sum the hourly columns, divide the hourly sums 

by the number of days in the month, allow for non-cyclic change, find the algebraic 

excess of each hourly mean value over the corresponding mean for the 24 hours, and 

convert the inequality thus formed into C.G.S. units, through multiplication by the 

factor representing the equivalent in force of 1 mm. 

When a temperature correction is required, the inequality of temperature for each 

month can be derived from the hourly measurements of the temperature curves. 

This is converted into force from a knowledge of the temperature coefficient, and the 

result is applied with appropriate sign as a correction to the inequality already 

obtained. There would be a great increase of labour, and no gain in accuracy, so 

far as the inequality is concerned, if each hourly value of the magnetic curve were 

corrected for temperature. A second and conclusive reason for not correcting 

individual hourly values was the fact that continuous records of temperature were 

not taken in the magnetograph room until 1895. This being so, a course was 

followed which at least reduced labour to a minimum. During the 11 years no 

change had been made in the magnetograph room, or in the programme of work done 

in it or adjacent parts of the building. There was thus no reason to suspect any 

considerable change in the thermal phenomena in the room, and evidence pointing to 

the same conclusion was derivable from the 3 or 4 daily readings from mercury 

thermometers under the glass shades covering the H and Y magnets. It was thus 

decided to calculate mean diurnal inequalities of temperature, utilising the 
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thermogram measurements made on magnetic quiet days from 1895 to 1900, and 

these were taken as applying to the whole 11 years. This attributes to each 

January, for instance, the same diurnal inequality of temperature, while it was no 

doubt larger in some Januarys than others. This procedure no doubt introduced 

slight errors into the inequalities for individual months of individual years, but 

these would tend to disappear in results from groups of years or from the whole 

11 years. 

The temperature correction of the TI magnetograph is about Y7y per 1° F., and the 

range of the temperature diurnal inequality in most months was under 1° F, so a 

difference of temperature lag of even 1 or 2 hours between the magnet and 

thermograph would have had little effect. The fluctuations of temperature in the 

magnetograph room from one day to the next are sometimes much greater than the 

range of the regular diurnal variation, and the comparison of the readings from 

the thermograph and mercury thermometer on the one hand, and the corresponding 

fluctuation in the base values derived from individual absolute observations on the 

other, afforded grounds for confidence that uncorrected effects of temperature in the 

H inequalities must be trifling. The Y magnet has a much larger temperature 

coefficient—about 12'5y for 1° F.—and the range of the regular diurnal variation is 

considerably less in V than in H. Thus there is more reason to fear uncorrected 

temperature effect in the Y inequalities. It is, however, mainly in the absolute daily 

range—i.e., the difference between the highest and lowest values throughout the 

day—that temperature uncertainty comes in. Undoubtedly some individual daily 

ranges, especially those of Y, suffered considerably from this cause. In the case of an 

element like Y at Kew considerably affected by temperature, it is sometimes difficult 

to recognise the maximum or minimum. If the temperature change in the day has 

been large, the maximum force may come at quite a different hour from the maximum 

ordinate. It may be necessary to take half a dozen measurements of the force curve, 

with the corresponding thermogram measurements, before one can decide. This is 

especially true of quiet curves—and most Y curves are quiet—at seasons when the 

regular magnetic diurnal variation is small. No temperature corrections, of course, 

were possible until 1895, and mean results based on a number of days would have 

been practically useless in dealing with individual days. It was accordingly decided 

to attempt no temperature corrections to absolute daily ranges, but to derive them 

from the magnetic curves as if these required no temperature correction. 

The neglect of temperature could hardly prejudice one’s view of the character 

of the day as quiet or disturbed, but undoubtedly in a few cases it led to a quiet 

day being assigned a Y range more appropriate to a day of moderate disturbance. 

The neglect of temperature may even have exerted a slight effect on the estimate of 

the mean monthly value of the absolute range, as the occurrences of maximum and 

minimum are much more numerous at certain hours than others, and so the effect ot 

the regular diurnal variation of temperature would not be wholly eliminated. 
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Non-cyclic Ch ange. 

§ 4. In obtaining the diurnal inequalities the non-cyclic (n.c.) change C—i.e., the 

algebraic excess of the value at the second midnight (hour 24) over that at the first 

midnight (hour 0)— has been eliminated in the usual way, by applying at hour n the 

correction C (12 — ??.)/24. In the case of D the value of C for each month of the 

eleven years was given in a previous paper.* The value — 0'T2 assigned there to 

February, 1892, should have been — 0/-22. Allowing for this, the mean values for 

the year 1892, for the month of February, and for the whole 11 years, become 

respectively — (T'031, — (f'052 and — (fi'301. The change of force perpendicular to 

the magnetic meridian necessary to alter D by F varied gradually from 5’29y in 

Table III.—Non-cyclic Change (Unit O'Oly). 

Element. 1890. 1891. 1892. 1893. 1894. 1895. 1896. 1897. 1898. 1899. 1900. 11 years. 

D - 7 - 15 - 16 - 23 -52 + 4 - 16 - 13 -25 -21 + 9 -16'0 
H + 2 + 68 + 200 + 69 + 90 + 84 + 118 + 80 + 63 + 61 + 42 +79-7 
V -37 | -67 - 55 - 55 -45 

| 
-40 - 25 -29 -30 -50 -28 -42-0 

1890 to 5'36y in 1900, the mean for the eleven years being 5‘32y. Tables III. 

and IV. give the mean yearly and monthly values of the n.c. change for the ordinary 

days in the three elements, those for D being expressed in terms of the equivalent 

force. Ordinary days, it should be noticed, include the quiet, though, of course, not 

the disturbed. 

Table IV.—Non-cyclic Change (Unit O'Oly). 
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D 9 -28 - 41 - 6 + 7 - 26 _ 2 0 -52 - 24 - 15 + 4 
H + 41 + 97 + 202 + 75 + 49 + 6 i + 54 + 132 + 64 + 87 + 84 + 67 
y 1 - 115 + 11 - 122 -211 • 219 -245 - 126 - 2 + 98 + 214 + 141 + 73 

There is obviously a prevailing tendency for the n.c. change on ordinary days to be 

negative in D and V and positive in H. The inference that the D and V elements 

were falling, and the H element rising, would be correct, though unwarranted. The 

n.c. effect is influenced, of course, by the secular change but it is partly of instrumental 

“ ‘National Physical Laboratory Collected Researches,’ vol. Y. (Table IIa., p. 48). 
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origin, and is partly dependent on the type of day dealt with. In the average of the 

Astronomer Royal’s quiet days, D rose 0''044 (0'23y), II rose 3'34y and V fell 0'84y. 

Thus if all days had been quiet days, D and H would in a single year have increased 

respectively 16'‘1 (86y) and 1219y, while V would have fallen.307y. The real 

average annual changes during the eleven years were — 5'79 ( — 30‘8y) in D, + 25'9y 

in H and — 22'6y in V. 

It seems desirable to look into the matter a little more closely. Take first the case 

of D. There were in the eleven years 209 disturbed and 19 incomplete days. None 

of the latter, so far as could be judged, were highly disturbed. If we regard them as 

ordinary, as we are fairly entitled to do, we have 3808 ordinary days. The mean 

observed n.c. changes on disturbed and ordinary days were respectively + Cf'327 and 

— Cf'0301. The total n.c. changes were thus + 68/-3 on disturbed and —114/-6 on 

ordinary days, leaving a balance of — 46/-3. If all measurements were exact, in the 

absence of instrumental change, we should expect this balance to agree with the 

observed secular change, but this at the observed average rate of — 5/-79 per annum 

amounted to — 63/-7. This leaves 16''4 unaccounted for, suggesting an instrumental 

drift of l/-5 per annum. 

In the case of H the 10 incomplete days may reasonably be regarded as ordinary, 

making a total of 3775 ordinary days. The observed n.c. change on ordinary days 

averaging + 0‘797y, the total n.c. change from the ordinary days of the eleven 

years comes to + 3009y. Of the remaining 242 days, 209 were included in the 

original list of disturbed days. The mean n.c. change for these days was — 13'2y, 

giving a total n.c. change of — 2759y. The remaining 33 days were included in the 

subsidiary list of distui’bed days, which was made out when the H curves came to be 

treated. The sum of the n.c. changes on these 33 days was only — 24y. Thus the 

total n.c. change for the 4017 days of the eleven years was ( + 3009 —2759 —24)y, 

or + 226y. The observed secular change, + 25‘9 x 11 or +285y, exceeds this by only 

59y, suggesting the trifling instrumental drift of — 5'4y per annum. 

In the case of Y, including the incomplete amongst the ordinary days, we have 3669 

of these with an average n.c. change of —0'420y, giving a total of — 1541y. Ihe 209 

disturbed days in the original list contributed +209 x 2'7y or +564y, while the 139 

disturbed days on the subsidiary list contributed +304y. Thus for the whole 4017 

days we have a balance of ( —1541 + 564 + 304)y or — 673y, as compared with a true 

secular change of —22‘6 x lly or —249y. This suggests an instrumental drift at the 

average rate of — 39y per annum. 

The chief importance perhaps of' these calculations is the light they throw on the 

trustworthiness of the magnetic curves and measurements. It is unnecessary to 

emphasise the fact that when instrumental creep is large it is a source of very 

considerable uncertainty. The results obtained above are not put forward as exact 

measures of the instrumental creep, but only as showing its order of magnitude and 

the general fact that it was small. Most of the quiet day curves were measured 

VOL. CCXVI.—A. 2 E 
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many years before the others, and a variety of scales were employed. Then the 

curves of the 209 originally selected disturbed days were not smoothed, while those of 

the ordinary days were. Thus in a good many cases, at the midnight common to a 

disturbed and an ordinary day two readings were taken, at widely different times, 

one on the unsmoothed curve, the other on a smooth pencil trace. In individual cases 

these two midnight readings differed considerably, and this of course influenced the 

balance of the n.c. changes. The difference between the n.c. changes in H on the 

209 days of the original disturbed list and the supplementary list of 33 days may 

appear suspicious, but is easily accounted for. During a large magnetic storm H 

nearly always shows a slight rise at the start. This is usually followed by a fall, 

which goes on until the value has diminished below the normal, sometimes much 

below the normal. There is then a recovery, which may go on at a gradually 

diminishing rate for some days. The ends and beginnings of storms were represented 

by a larger proportion of the 33 than of the 209 days. One of the 33 days showed 

an n.c. change of + 140y. 

In the case of D what the absolute observations suggested was not a real 

instrumental drift, but occasional small discontinuities due probably to movements of 

iron in the building. In the case of H there is confirmatory evidence from the base 

line values that the instrumental creep is in the direction simulating a fall of force, 

but they suggest — 15y per annum as a more probable estimate than — 5y as found 

above. In the case of Y the instrumental creep in reality seems to fluctuate in 

direction. When a sensible change of sensitiveness occurred in the course of the 

year, the tendency to creep seemed more apparent. On individual ordinary days the 

n.c. change in V is mainly a temperature effect. This may in fact be recognised in 

the figures given in Table IY. The four months April to July include most of the 

summer rise of temperature in the magnetograph room, the principal part of the 

annual fall taking place in the four months September to December. The mean daily 

n.c. changes during these two groups of months are by Table IY. : 

From April to July — 2'00y. 

,, September to December +l‘32y. 

The two means will naturally include equal or approximately equal contributions from 

any regular source of drift which is independent of temperature, such for instance as 

might arise from gradual weakening of the magnet. If we ascribe the difference 

between the two four months’ means obtained above solely to temperature, and take 

the known temperature coefficient, viz., 12'5y per 1° F., then assuming the rise and 

fall of temperature in the two groups of months equal, we find for its amount 

(3-32/2) x (120/12-5) = 16"0 F. 

This is not far from the truth. The annual range in reality usually exceeded 20° F., 

but the rise usually began in February and continued throughout part of August. 



FROM ORDINARY DAYS OF THE ELEVEN YEARS 1890 TO 1900. 197 

The fall of temperature usually continued throughout January, but the readjust¬ 

ments of the magnetograph were usually made in that month leading to special 

uncertainties in the n.c. changes. 

Diurnal Inequalities. 

§ 5. The diurnal inequality of a magnetic element is in continuous variation with 

the season ol the year ; it also varies according to the development of sunspots, and 

it depends on the more or less disturbed character of the day. There are most likely 

other causes of variation ; for instance, it seems unlikely that the diurnal variation at 

a particular station remains wholly unaffected by the secular change in the earth’s 

magnetism. In deciding on the amount of detail advisable in the presentation of the 

facts, several conflicting considerations have to be allowed for. There is a great deal 

which in the present state of our knowledge must be regarded as accidental in the 

magnetic changes on any individual day. If we derive inequalities from the combi¬ 

nation of a very limited number of days, a good deal of this “accidental ” element will 

remain uneliminated. If, on the other hand, we combine a large number of days from 

the same year, the inequality is inevitably a blend of more or less conflicting 

characteristics. The extent to which this is the case differs at different seasons of the 

year. There is, for instance, much greater variation in the type and amplitude of the 

diurnal inequality in the five months November to March than in the five months 

April to August. If we have at our disposal the data from a large number of years, 

we can get smooth diurnal inequalities for individual seasons of the year a good deal 

shorter than a calendar month. This is what we should naturally do if our object 

were to examine in very minute detail the mode of variation of the diurnal inequality 

throughout the year. It is, however, open to the objection that it would produce a 

mass of detail which few readers if any could digest. The object in view moreover 

might be to some extent defeated by the influence of the sunspot relationship and 

secular change effects. Considerations of space must also be borne in mind. Diurnal 

inequalities for each of the 132 months of the eleven years—let alone shorter periods 

of the year—for H, V, N, W, T and I would have entailed printing an immense mass 

of figures. As a matter of fact, diurnal inequalities were calculated for H and Y 

from each of the 132 months, but not for the other elements. The H and Y ranges 

from these 132 inequalities are given later, but it was decided to publish for each of 

these elements only four tables of diurnal inequalities. Thus, in the case of H, Table A . 

gives the 12 diurnal inequalities obtained by combining all the months of the same 

name in the 11 years, three diurnal inequalities for the seasons winter (November to 

February), equinox (March, April, September and October) and summer (May to 

August), and finally the mean diurnal inequality for the whole year. Table YI. 

differs from Table Y. only in that it is confined to the four years 1892 to 1895 repre¬ 

senting large sunspot frequency ; for brevity, it is described as referring to sunspot 

maximum. Table YII. is similarly confined to 1890, 1899, and 1900, and described as 

2 e 2 
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representing sunspot minimum. The mean values of Wolfer’s sunspot frequency for 

the years included in these three tables were respectively 417, 75'0 and 7 "2. Finally 

Table YIII. gives for each of the eleven years the mean diurnal inequality for the 

whole year. Tables IX. to XII. for V correspond exactly with the four tables for H. 

The n.c. element has been eliminated from all these tables in the way already 

described. All the inequalities refer to G.M.T. Kew local time is only \\ minutes 

after Greenwich, so the employment of local time would have made little difference. 

§ 6. The other inequalities were calculated from the H, Y and D inequalities, taking 

the latter as given in my previous paper. We have 

T2 = H2 + Y2, tan I = Y/H, N = H cos D, W = H sin D . . . (l). 

Thus if AT, AH, &c., represent corresponding small departures from the mean 

values we have 

AT = cos I AH + sin I AY, 

AI = l sin 21 (AY/V- AH/H), 

AN = cos D AH —H sin D AD, 

AAV = sin D AH + H cos D AD 

The coefficients of AH, AY, &c., on the right-hand sides of these equations varied 

slightly throughout the eleven years, in consequence of the secular change. They 

were treated as constant throughout individual years, and mean values were taken 

for inequalities based on the eleven years. In the latter case the formulae actually 

used were 

AT = 0-384 AH + 0'923 AY, 1 

AI = 0’02775 AY —0'0668 AH, 
y.3 . 

AN = 0-955 AH—D58 AD, i 

AW = 0-298 AH+5-08 AD 

where the unit is 1' in the case of Al and AD, and ly in the case of the force 

elements. 

Table XIII. gives diurnal inequalities for T. The results for the 12 months are 

from the 11 years combined. But in addition to a diurnal inequality for the year 

from the 11 years combined, there are corresponding inequalities for the sunspot 

maximum and minimum groups of years. 

For I two inequality tables are given. Table XIY. contains inequalities for the 

12 months and the whole year from the 11 years combined, being derived from 

Tables A'. and IX. It also contains diurnal inequalities for the year from the sun¬ 

spot maximum and minimum groups of years. Table XAr. gives diurnal inequalities 

for the whole year, from the separate years, based on Tables VIII. and XII. 

Tables XAH. and XAHI. give monthly and seasonal diurnal inequalities for N and AY 
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from the whole 11 years, and diurnal inequalities for the year from the 11 years and 

the groups of years of sunspot maximum and minimum. 

To save decimals O'ly is employed as the unit in the tables relating to elements of 

force. The extreme hourly values, he., the algebraic maximum and minimum, are in 

heavy type. In addition to the hourly values, the tables give the range or algebraic 

difference of the extreme hourly values, and the quantity described as A.D. (or 

average departure from the daily mean). The latter quantity represents the result 

obtained by dividing by 24 the numerical sum of the differences of the 24 hourly 

values from their arithmetic mean. 

If readings were taken at every minute, instead of every hour of the day, larger 

values would in most cases be obtained for the range of the inequality, because it 

must be exceptional for the extreme values to fall at exact hours G.M.T. The under¬ 

estimate, however, thus arising is usually very small, as is easily recognised from the 

shape of the curves representing the inequalities. The value of the A.D. is naturally 

less affected by the accident of time, and in most cases it probably gives a better idea 

than the range of the activity of the forces to which the diurnal inequality is due. 

This is more especially the case when the inequality shows a double daily variation with 

two maxima and two minima. 

§ 7. The inequality data in Table V. are shown graphically in fig. 1. As in other 

similar cases, the general features are most readily recognised in the curve, while for 

details recourse is desirable to the numerical data. Fig. 2 shows the H inequalities 

for the three seasons and the year, contrasting the data for the whole eleven years in 

Table Y. with those for the sunspot maximum and minimum groups of years in 

Tables YI. and YII. 

The composite character of the diurnal inequality in H derived from the whole 

year is most clearly seen by comparing some of the seasonal data in the morning 

hours in Table Y. At 6h., for instance, while the winter value has its maximum for 

the day, the summer value falls below the daily mean. The transition from plus to 

minus in winter does not occur until nearly 9h., while it occurs in equinox shortly 

after 7 a.m., and in summer shortly after 5 a.m. 

The minimum or principal minimum for the day occurs at lOh. from May to 

September, and at llh. in the remaining seven months. It is the most constant and 

dominant feature in the inequality. In the four summer months the afternoon 

maximum—then the only maximum—is almost equally prominent, but in the other 

months the afternoon maximum resembles a plateau rather than a peak, and in the 

winter months the principal maximum occurs in the forenoon. 

The forenoon maximum exists also as a secondary maximum in March and October, 

and even at midsummer the appearance of the curves suggests some influence 

delaying the plunge to the minimum at lOh. In most months the rise to the 

afternoon maximum seems to lag somewhat near 4 p.m., and a distinct secondary 

minimum is then recognisable in the case of January. 
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Table V.—Diurnal Inequality in Horizontal 

lb. 2h. 3h. 4h. 5h. 6h. 7b. 8h. 9h. 10b. lib. 12h. 

Januai-y + 3 + 7 + 19 + 35 4 57 + 70 4 67 + 39 - 17 - 63 - 90 - 70 

February . + 17 + 14 + 16 + 30 + 50 + 67 4 69 + 41 - 21 - 78 -112 - 93 

March . + 46 + 43 4 45 + 45 4 58 4 63 4 44 - 16 -109 -181 -204 -153 

April + 74 + 56 + 50 4 47 4 46 4 40 — 2 — 78 -178 -262 -271 -202 

May .... + 60 + 46 4 36 4 26 4 8 - 31 - 97 - 164 -213 — 235 -214 -153 

June + 52 + 38 4 33 + 28 + 6 - 47 -115 - 181 -235 -255 -224 -162 

July. . . . + 56 4 42 + 32 4 25 4 2 - 44 -107 - 175 -235 -262 -238 -167 

August. . '+ 81 4 62 4 57 + 41 4 15 - 23 - 98 - 183 -247 -266 -225 -137 

September. + 78 4 67 + 61 4 61 4 55 + 26 - 32 - 117 -202 -247 -227 -135 

October + 62 4 60 4 64 + 74 + 86 4 80 4 49 - 26 -130 -207 -213 -165 

November . . + 18 4 22 4 34 4 48 4 65 4 75 4 65 + 27 - 48 -105 -122 - 94 

December . . - 2 + 3 4 17 + 34 + 56 + 72 4 67 4 48 4 6 - 41 - 64 - 63 

Winter . . . + 9 4 12 4 22 4 37 4 57 4 71 4 67 4 39 - 20 - 72 - 97 - 80 

j Equinox . + 65 + 57 4 55 4 57 + 61 4 52 4 15 - 59 -155 -224 -229 -164 

j Summer . . + 62 4 47 4 39 + 30 4 8 - 36 -104 - 176 -233 -255 -225 -155 

Year + 45 + 38 4 39 4 41 4 42 + 29 - 8 — 65 -136 -184 -184 -133 

Table VI.—Diurnal Inequality in Horizontal Force, 

lb. 2h. 3h. 4h. 5b. 6h. 7b. 8b. 9b. lOh. llh. 12b. 

January . . + 21 4 24 4 36 4 52 4 71 4 82 + 74 4 38 - 30 - 93 -125 -Ill 

February . . 4 24 4 23 4 25 + 39 + 66 4 86 + 81 4 39 - 38 -107 -149 -128 

March . . 4 55 4 55 4 62 + 64 4 74 4 77 4 43 - 27 -137 -231 -265 -197 

April 4 97 4 72 4 64 4 58 4 52 + 45 - 15 -104 -224 -332 -335 -250 

May.... 4 70 4 50 4 45 + 34 4 13 - 27 - 104 -188 -254 -285 -269 -194 

J une + 61 4 46 + 41 + 36 + 8 - 59 - 149 -241 -311 -324 -275 -194 

July. . . . 4 69 4 55 4 38 4 29 - 6 __ 61 - 132 -212 -288 -328 -307 -219 

August . + 99 4 77 + 72 4 56 + 16 - 21 - 115 — 215 -292 -318 -282 — 18S 

September. + 95 + 84 4 73 4 72 + 64 4 34 - 33 -133 -233 -269 -253 -163 

October . . 4 82 + 84 4 89 4 99 4 111 + 100 4 59 - 34 -159 -261 -272 -212 

November . . + 35 + 46 4 58 F 64 4 81 + 93 + 81 4 29 - 65 -131 -163 -137 

December . 4 9 + 10 4 24 + 44 4 67 + 84 4 74 4 53 0 - 58 - 94 - 95 

Winter. . . + 22 4 26 4 36 + 50 + 71 + 86 -F 77 + 40 - 33 - 97 -133 -118 

Equinox . . 4 82 + 74 4 72 + 73 4 75 4 64 +• 13 - 75 -188 -273 -281 -205 

Summer . . 4 75 + 57 + 49 + 39 4 8 - 42 - 125 -214 -286 -314 -283 -199 

Year . . . + 60 4 52 + 52 4 54 + 51 + 36 - 11 - 83 -169 -228 -232 -174 
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Force, from 11 Years. (Unit O'ly.) 

13h. 141i. 15b. 16h. 17h. 18h. 19b. 20k. 2 lb. 22h. 23b. 24b. Range. A.I). 

- 29 — 5 — 7 — 16 - 12 0 + 5 + 4 0 + 1 + i + 1 160 25 -8 

- 57 - 27 - 16 - 15 - 10 + 1 + 10 + 21 + 25 + 24 + 25 + 21 181 35-8 

- 87 - 32 + 6 + 21 + 23 + 37 + 53 + 60 + 62 + 63 + 60 + 53 267 65 -2 

-125 - 47 + 10 + 50 + 83 + 105 + 112 + 110 + 103 + 98 + 93 + 89 383 97 -1 

- 93 - 32 + 25 + 74 + 123 + 154 + 164 + 143 + 120 + 100 + 86 + 72 399 102-9 

- 95 - 21 + 46 + 90 + 133 + 165 + 183 + 168 + 136 + 107 ' + 83 + 67 438 111 3 

- 91 - 14 + 53 + 95 + 130 +156 + 169 + 162 + 137 + 111 + 90 + 71 431 111 -o 

- 58 + 1 + 40 + 59 + 80 + 110 + 136 + 136 + 127 + 111 + 95 + 87 402 103-1 

- 58 - 14 4 5 + 18 + 3o + 64 + 89 + 97 + 95 + 96 + 98 + 86 345 86 0 

-103 - 51 - 19 - 6 + 16 + 40 + 53 + 60 + 65 + 71 + 72 + 68 299 76 -7 

- 62 - 40 - 26 - 8 + 12 + 18 + 21 + 22 + 20 + 20 + 18 + 19 197 42 -0 

- 43 — 30 — 23 15 - 5 — 2 — 1 — 5 — 4 - 3 — 1 - 2 136 25 -3 

- 48 — 26 — 18 — 14 - 4 + 4 + 9 + 10 + 10 + 11 + 11 + 10 168 31-6 

- 93 - 36 0 + 21 + 39 + 61 + 77 + 83 + 81 + 83 + 81 + 74 311 80-0 

- 84 - 17 + 41 + 80 + 117 + 146 + 163 + 152 + 130 + 107 89 + 74 418 107 -1 

- 75 - 26 + 8 + 29 + 51 + 71 + .83 + 81 + 74 + 67 + 60 + 53 267 67 6 

from Sunspot Maximum Years. (Unit O'ly.) 

13h. 14b. 15li. 16h. I7h. 18b. 19k. 20h. 21h. 22b. 23b. 24h. Range. A.D. 

- 66 - 28 - 22 - 23 - 9 + 8 + 15 + 16 + 18 + 19 + 18 + 15 207 42 -2 

- 87 - 52 - 25 - 10 + 5 + 18 + 22 + 30 + 35 + 34 + 39 + 30 235 49 -7 

-115 - 38 + 10 + 30 + 35 + 56 + 71 + 77 + 80 + 78 + 77 + 66 345 81-2 

-154 - 64 + 6 + 64 + 102 + 132 + 149 + 147 + 133 + 128 + 117 + 112 484 123 -2 

-124 - 49 + 24 + 88 + 149 + 188 + 20! + 176 + 151 + 125 + 100 + 82 486 124 -6 

-109' — 15 + 6S + 126 + 175 + 210 + 226 + 207 + 168 + 129 + 97 + 79 550 139 -7 

-124 - 27 + 64 + 125 + 179 + 209 + 259 + 202 + 171 + 137 + 115 + 92 547 142 -0 

- 98 - 8 + 43 + 78 + 103 + 137 + 167 + 168 + 158 + 137 + 117 + 105 486 128-1 

- 81 - 32 — 5 + 17 + 37 + 74 + 102 + 112 + 109 + 113 + 114 + 100 383 100-1 

-135 - 71 - 25 - 1 + 23 + 52 + 63 + 75 + 81 + 84 + 84 + 85 383 97 "5 

-106 - 67 - 40 - 16 4- 8 + .19 + 29 + 33 + 42 + 40 + 34 + 33 256 60 "4 

- 74 - 52 - 35 — 15 __ 2 + 2 + 4 + 8 + 8 + 13 + 13 + 12 179 35-4 

- 83 - 50 - 30 - 16 0 + 12 + 17 + 22 + 26 + 27 + 26 + 22 219 46-7 

-121 - 51 - 4 + 28 + 49 + 78 + 96 + 103 + 101 + 101 + 9S + 91 384 99 -8 

-114 - 25 + 51 + 104 + 151 + 186 + 203 + 188 + 162 + 132 + 107 + 90 517 133 -5 

-106 - 42 6 + 39 + 67 + 92 + 106 + 104 + 96 + 86 + 77 + 68 3r3S 87-1 
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Fig. 1. Horizontal force. 11 years. 
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Fig. 2. Horizontal force. 
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Table VII.—Diurnal Inequality in Horizontal Force, 

lb. 2b. 3h. 4h. 5h. 6h. 7 h. 8b. 9h. lOh. lib. 12b. 

January — 16 — 17 — 5 + 9 + 32 + 47 + 49 + 31 - 12 - 30 - 47 - 17 

February . + 16 + 7 + 10 + 20 + 34 + 48 + 53 + 36 - 20 - 61 - 88 - 69 

March . . . + 31 + 27 + 29 + 27 + 41 + 48 + 41 - 10 - 89 -143 -157 -112 

April . . . + 55 + 37 + 29 + 27 + 28 + 26 + 5 - 47 -129 -195 -198 -145 

May .... + 51 + 42 + 33 + 23 + 7 - 30 - 84 -137 -175 -187 -160 -108 

June + 45 + 31 + 24 + 27 + 15 - 22 - 76 -132 -182 — 208 -185 -134 

July. . . . + 48 + 32 + 22 + 18 + 5 - 32 - 89 -146 -194 -204 -173 -104 

August. . . 63 + 53 + 44 + 30 + 11 - 27 - 87 -154 -201 -213 -167 - 86 

September + 55 46 + 43 + 49 + 50 + 24 - 25 - 94 -168 -216 -195 -105 

October . . + 42 + 43 + 47 + 55 + 68 + 63 + 39 - 21 - 98 -154 -159 -127 

November. + 5 + 4 + 18 + 35 + 53 + 58 + 44 + 17 - -41 - 84 - 87 — 65 

December . — 7 — 1 + 12 + 29 + 50 + 63 + 62 + 47 + 7 - 33 — 45 - 39 

Winter. . . — i — 2 + 9 + 23 + 42 + 54 + 52 + 33 - 17 - 52 - 67 - 48 1 

Equinox . + 46 + 38 + 37 + 40 + 47 + 40 + 15 - 43 -121 -177 -177 -122 

Summer . + 52 + 39 + 31 + 24 + 9 28 - 84 -142 -188 -203 -171 -108 

Year . . . + 32 + 25 + 25 + 29 + 33 + 22 — 6 - 51 -108 -144 -138 - 93 

Table VIII.—Diurnal Inequality in Horizontal 

Year. lb. 21i. 3b. 

l 

4b. 5b. 6b. 7b. 8h. 9b. 10b. lib. 12b. 

1890 + 34 + 25 + 24 + 29 + 33 19 - 10 - 52 -109 —142 -133 - 84 

1891 42 + 37 + 38 + 43 + 43 + 25 - 11 - 67 -135 —182 -182 -134 

1892 + 61 + 51 + 49 + 49 39 + 26 - 18 - 89 -174 -232 -231 -166 

1893 + 64 + 56 + 55 + £9 + 62 + 41 - 9 - 86 -178 -244 -251 -187 

1894 + 60 + 51 + 55 + 55 + 54 + 40 - 8 - 82 -169 -230 -234 -186 

1895 + 55 4- 51 + 49 + 52 + 5 L + 37 - 10 — 75 — 156 -206 -213 -157 

1896 + 44 + 36 + 36 + 36 + 41 + 29 - 3 — 56 -129 -180 -184 -135 

1897 + 41 + 33 + 33 + 37 + 39 + 32 + 3 — 50 -110 -160 -159 -114 

1898 + 38 + 32 + 31 + 34 + 35 + 21 - 10 - 61 -117 -152 -149 -105 

1899 + 36 + 28 + 27 + 30 + 35 + 26 - 5 — 55 -117 -154 -147 -102 

1900 + 27 + 23 + 25 + 29 + 31 
_ 

+ 
_ 

22 - 3 - 46 

_ 
-100 

_ 
-137 -136 - 92 
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from Sunspot Minimum Years. (Unit O’ly.) 

13h. 14b. 15h. 16b. 17b. 18b. 19b. 201i. 21b. 22b. 23 h. 24b. Range. A.D. 

+ 20 + 32 + 21 + 1 — 17 - 10 - 9 - 9 - 14 — 14 _ 12 _ n 96 20-1 

- 30 - 2 + 1 - 5 - 10 — 7 + 2 + 11 + 15 + 10 4- 15 + 17 141 24 5 

- 55 - 13 + 17 + 23 + 17 + 24 + 34 + 43 + 44 + 47 + 44 + 41 205 48-2 

- 92 - 27 + 22 + 41 + 60 + 70 + 75 + 75 + 75 + 71 + 68 + 69 273 69-4 

- 58 - 11 + 26 + 55 + 89 + 114 + 123 + 105 + 92 + 76 + 66 4- 54? 310 79 '4 

- 72 - 13 + 31 + 60 + 89 + 119 + 140 + 128 + 106 + 86 4- 68 4 55 348 85 ’3 

- 48 + 5 + 42 + 61 + 78 + 104 + 123 + 123 + 103 + 90 4- 73 4- 61 327 82 ’4 

- 22 + 15 + 34 39 + 46 + 76 + 108 + 105 + 101 + 91 4- 77 + 70 321 80 -0 

- 35 - 1 + 13 + 19 + 31 + 5o + 79 + 80 + 74 + 74 4- 80 + 68 296 70 -0 

- 79 - 38 - 14 2 4* 16 + 35 + 42 + 42 + 47 4- 53 + 50 4- 46 227 57 5 

- 32 - 16 - 8 + 6 + 17 + 21 + 19 + 11 + 6 4- 6 4- 7 + 8 145 27 '8 

— 14 — 11 13 — 11 - 4 - 3 - 13 - 23 - 19 — 15 — 9 - 9 108 22 5 

— 14 4* 1 0 — 2 — 3 0 0 - 3 - 3 — 3 0 4- 1 121 17-9 

- 65 - 20 + 10 + 20 + 31 + 46 + 58 + 60 | + 60 + 61 4- 60 + 56 238 60 '4 

- 50 - 1 + 33 + 54 4- 75 + 103 + 123 + 115 + 100 4- 86 4- 71 4- 60 326 81 -3 

— 43 — 7 + 14 + 24 + 34 + 50 + 60 + 58 + 53 + 48 4- 41 4* 39 204 49-2 

Force, from Individual Years. (Unit O'ly.) 

13h. 14b. 15b. 16h. 17b. 18h. 19b. 20b. 21h. 22b. 23b. 2 lb. Range. A.D. 

- 34 0 + 17 + 29 4- 34 + 4S 4- 56 + 51 4- 47 4- 41 + 39 + 3S 198 47 -0 

- 73 - 20 + 18 4- 35 + 58 4- 76 4- 80 + 76 4- 66 + 60 + ‘57 + 50 262 67 6 

-100 - 36 4- 10 + 43 + 72 + 95 + 107 + 105 + 99 4* 89 4- 81 4- 71 339 87 -2 

-110 - 3S 4- 14 4- 47 + 71 + 92 4- 105 + 104 + 05 4- 87 4- 79 4- 73 356 92 -0 

-116 - 53 — 4 + 35 + 70 + 101 + 114 +112 + 102 + 89 4- 78 4* 66 348 90 -2 

- 97 - 41 + 2 + 30 + 55 + 81 4- 97 + 96 4- 88 + 80 + 71 + 61 310 79-6 

- 77 - 29 + 6 + 27 4- 48 + 69 4- 82 + 84 4- 75 4- 68 + 59 + 53 268 66 "1 

- 67 - 32 — 6 + 12 4- 40 +• 62 4- 76 + 74 + 63 4- 56 + 53 4- 43 236 58-1 

- 57 - 18 + 3 + 18 + 39 + 54 4- 71 + n + 66 4- 58 + 52 + 45 224 55 '8 

— 55 - 16 4- 8 + 19 4- 36 + 54 + 66 + 65 + 61 + 59 4- 55 + 47 220 54 "3 

- 41 - 4 4- 17 + 24 + 33 + 48 + 59 + 57 + 50 4- 44 + 38 4- 32 196 46 6 

F 9 
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Table IX.—Diurnal Inequality in Vertical 

lb. 2h. 3b. 4h. 5b. 6h. 7h. 

00 9h. lOh. lib. 12h. 

January . . - 6 - 10 - 16 - 18 

| 

- 19 - 20 - 23 - 25 - 30 - 36 - 33 - 39 

February . . - 8 - 20 - 24 - 19 - 21 - 23 - 23 - 23 - 31 - 61 - 70 - 61 

March . . - 6 — 15 - 21 - 20 - 17 - 15 - 6 - 10 - 44 - 90 , -126 -127 

April . . . -l- 4 - 8 - 14 - 15 - 8 + 2 + 10 - 4 - 51 -106 -153 -167 

May.... + 7 0 — 2 + 2 + 7 + 6 - 10 — 35 - 85 -149 -194 -190 1 

J une . . - 5 - 19 - 20 - 14 - 8 - 16 - 25 - 51 - 84 -129 —162 -154 

July. . . . - 3 - 25 - 33 - 30 - 21 - 34 - 41 — 55 — 85 -115 -151 -155 

August . . . - 2 - 10 - 10 - 8 + 4 + 9 + 6 - 13 - 59 -106 -143 -147 

1 September. . - 2 - 9 - 16 - 18 - 21 - 15 - 11 - 28 - 66 -106 —127 -122 

October . . - 8 - 14 - 23 - 24 - 26 - 25 - 15 - 10 - 31 - 72 - 98 - 89 

November. . - 15 - 20 - 23 - 23 — 22 - 27 - 31 - 25 - 31 - 54 - 54 - 37 

j December . . - 3 - 12 - 15 - 17 - 13 - 12 - 13 - 16 - 23 - 36 - 34 - 35 ! 

j Winter. - 8 - 10 - 20 - 19 - 19 - 20 - 23 — 22 - 29 - 47 - 48 - 43 

Equinox . . - 3 - 12 - 18 - 19 - 18 - 13 - 6 - 13 - 48 - 94 —126 -126 

Summer . . - 1 - 13 - 16 - 13 — 5 - 9 - 17 - 38 - 78 -125 -163 -162 

Tear. . . . - 4 - 14 - 18 - 17 - 14 - 14 - 15 - 25 - 52 - 88 — 112 -110 

Table X.—Diurnal Inequality in Vertical Force, 

lb. 2h. 3h. 4h. 5h. 6h. 7h. 8h. 9h. 10h. nil. 12h. 

January . . - 4 - 10 - 20 - 24 — 25 — 24 — 27 — 28 - 34 — 45 - 41 - 50 

February . - 6 - 21 - 24 - 20 - 26 - 31 - 27 - 23 - 37 - 78 - 88 - 74 

March . . . - 17 - 22 - 34 - 30 - 22 - 18 0 0 - 38 - 90 -130 -133 

April . . . - 5 - 18 - 22 - 21 - 8 + 8 -F 20 + 7 - 46 -105 -160 -178 

May .... 0 — 5 - 7 + 3 + 13 + 13 - 5 - 35 - 91 -168 -223 -215 

June - 16 - 28 - 28 - 18 - 6 - 10 - 20 - 53 - 89 -146 -185 -180 

July. . . . - 9 - 39 - 49 - 47 - 36 45 - 56 - 73 -102 -135 -171 -178 

August. . . — 5 - 13 - 15 - 13 + 2 + 10 + 8 - 10 — 59 -115 -153 -156 

September. - 5 - 11 - 18 - 23 - 26 19 - 13 - 31 - 73 -116 -138 -130 

October . . - 12 — 22 - 34 - 36 — 39 _ 38 - 24 — 16 - 34 - 83 -112 -105 

November. . - 21 - 28 - 30 - 31 — 29 — 33 — 36 - 24 - 30 - 59 - 62 - 45 

December . . - 12 - 25 - 26 -26 - 22 _ 19 19 _ 19 - 26 - 43 - 46 - 42 

Winter. . . - 11 - 21 - 25 - 25 _ 26 - 27 _ 27 _ 24 - 32 — 56 - 59 - 53 

Equinox . - 10 - 18 - 27 - 28 - 24 17 - 4 - 10 - 48 - 99 -135 -136 

Summer . . - 8 - 21 - 25 - 19 — 7 8 — 18 — 43 - 85 -141 -183 -182 

Tear. . . . ~ 9 
-2° 

- 26 - 24 — 19 — 17 — 17 — 25 — 55 - 99 -126 -124 
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Force, from 11 Years. (Unit O'ly.) 

13h. 14b. 15h. 161i. l7h. 18h. 19b. 201i. 21h. 22h. 23b. 24h. Range A.D. 

- 23 + 13 + 33 + 34 4 40 + 39 4 38 + 38 4 33 4 18 + 10 + 2 79 24-8 

- 44 - 4 + 38 + 60 4 68 + 66 + 57 + 53 + 41 + 27 + 16 + 6 138 36 -0 

- 93 - 30 + 38 + 84 + 103 + 88 4 89 + 78 + 63 + 44 + 19 + 2 230 51 *6 

-132 - 51 + 16 + 59 + 96 + 116 + 110 + 97 + 77 + 58 + 40 + 23 283 59 -0 

-138 - 61 + 9 + 67 + 115 4 143 + 139 + 125 + 98 *F 70 + 50 + 28 336 72 -0 

-109 - 43 + 17 4 75 + 120 + 141 4 143 + 127 4 98 + 64 + 37 + 19 304 70 -0 

-120 - 50 4 24 + 81 + 128 + 154 + 149 + 134 + 106 + 75 + 45 4 22 309 76 5 

-107 - 38 + 31 + 74 + 101 + 106 + 89 + 80 + 63 4 45 + 25 + 9 253 53 '5 

- 78 - 16 + 39 + 81 4 94 4 94 4 93 + 82 + 67 ; 4 50 + 30 + 8 221 53-0 

- 57 - 11 + 38 + 69 4 73 + 73 4 67 + 65 4 57 4 38 4 20 4 6 170 42-0 

- 15 4 29 4 53 4 61 + 58 4 52 + 46 + 38 + 33 + 15 + 2 - 9 115 32 -2 

- 22 + 5 + 21 + 32 4 35 + 34 + 31 + 29 + 28 + 21 4 13 4 5 71 21 -0 

- 26 + 11 + 36 + 47 4 50 + 48 + 43 + 40 + 34 + 20 + 10 + 1 98 28 -3 

- 90 - 27 + 33 + 73 + 91 4 95 + 90 + 81 + 66 4 47 + 27 + 10 221 51 1 

-118 - 48 4 20 + 74 + 116 + 136 + 130 + 117 4 91 + 64 + 39 4 19 299 67 -2 

- 78 — 21 + 30 + 65 + 86 + 93 87 + 79 + 64 + 44 4 26 4 10 205 48 -6 

from Sunspot Maximum Years. (Unit O'ly.) 

13h. 14h. 15b. 16h. I7h. 18h. 191i. 20h. 21b. 22h. 23b. 24b. Range. a.d. ; 

- 35 + 9 + 34 + 43 + 49 + 49 + 51 + 49 + 44 + 23 + 12 + 4 101 30 6 

- 52 - 3 + 45 + 69 + 82 + 77 + 71 4 64 + 47 + 29 + 19 + 7 170 42-5 

- 98 - 30 + 44 + 97 + 121 + 117 + 100 + 85 + 63 + 38 4 7 - 10 254 56 "0 

— 57 + 13 + 67 + 107 + 126 + 120 + 106 + 83 4 57 4 37 4 14 304 63 8 

-159 — 78 + 6 + 72 + 135 + 173 + 1 64 4 14b + 110 + 76 4 51 4 24 396 82-2 

-129 — 51 + 24 + 89 + 146 + 169 + 164 + 142 + 109 + 68 + 35 4 13 354 79'9 

| -141 — 53 + 34 + 104 + 162 + 193 + 184 + 164 + 127 + 89 + 52 + 25 371 94-5 ! 

-117 — 36 + 34 + 86 + 114 + 114 + 95 + 84 + 64 4 46 4 24 4 11 270 57 *7 

- 82 — 16 + 48 + 91 + 107 + 105 + 102 + 89 + 72 + 52 + 30 + 5 245 58-4 

- 68 — 13 + 51 + 84 + 97 + 95 + 86 + 81 + 70 + 43 + 23 4 6 209 53-0 

- 24 + 31 + 63 + 81 4 75 + 65 + 55 + 46 4 35 4 11 0 - 10 143 38 '5 

- 27 + 11 + 33 + 48 + 50 + 45 + 44 + 44 + 37 + 25 4 13 + 2 96 29 3 

- 34 + 12 + 44 + 60 + 64 4 59 + 55 + 51 + 41 + 22 + 11 + i 123 35 0 

- 98 29 + 39 + 85 + 108 + iii + 102 4 90 + 72 + 48 4 24 4 4 247 56 9 

-137 — 55 + 25 + 88 + 139 + 162 + 152 + 134 + 103 + 70 4 41 + 18 345 77 *7 

- 90 - 24 4 36 + 78 + 104 + 111 + 103 + 92 + 72 + 46 + 25 4 8 237 56 -2 
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Fig. 3. Vertical force. 
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Fig. 4. Vertical force. 
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Table XI.—Diurnal Inequality in Vertical Force, 

111. 2h. 3h. 4h. 5h. 6h. 7h. 8h. 9h. lOh. llh. 121i. 

January _ 9 _ 11 _ 14 - 13 — 11 — 13 — 17 — 21 - 26 - 30 - 25 - 28 

February . — 8 - 16 — 21 - 18 - 16 - 16 - 17 - 20 - 25 - 43 - 49 - 46 

March . . + 8 — 2 - 6 — 5 - 6 - 8 - 2 - 7 - 35 — 75 -108 -113 

April . . + 17 + 7 + 3 + 3 4 2 4 5 4 7 - 9 - 50 - 99 -140 -154 

May. . . + 18 + 10 + 2 + 8 + 9 4 3 - 12 - 34 - 80 -127 -162 -165 

June . . + 2 — 10 - 9 - 4 - 4 - 14 - 20 - 39 - 70 -111 -140 -131 

July. . . — 7 - 24 - 28 - 24 - 17 - 31 - 32 - 42 - 68 - 92 -127 -122 

August. . + 3 - 1 - 2 + 3 4 15 + 15 + 12 - 6 - 48 - 86 -119 -126 

September. 0 - 5 - 9 - 8 - 11 - 8 - 3 - 19 - 52 - 86 -108 -105 

October. . - 1 - 7 - 14 - 12 - 12 - 11 - 5 - 2 - 17 - 50 - 74 - 74 

November. — 8 - 9 - 11 - 15 - 13 - 19 - 20 - 21 - 26 - 43 - 42 - 28 

December . + 2 - 3 - 5 - 6 — 4 — 4 - 5 — 9 - 16 - 20 - 25 - 27 

Winter. . _ 6 _ 10 — 13 - 13 _ 11 — 13 _ 15 — 18 - 23 - 36 - 35 - 32 

Equinox . + 6 - 2 - 7 - 6 - f 
4 - 5 - 1 - 9 - 39 - 78 -107 -Ill 

Summer . + 4 - 6 - 9 - 4 4 1 - 7 - 13 - 30 - 67 -104 -137 -136 

Tear. . . + 1 — 6 9 - 8 — 6 — 8 — 10 — 19 - 43 - 73 - 93 - 93 

Table XII.—Diurnal Inequality in Vertical 

Year. lh. 2h. 31i. 4h. 5h. 6h. 7k. 81i. 9k. 10b. llh. 12k. 

1890 0 - 8 - 12 - 8 - 5 - 8 - 8 - 18 - 40 - 68 - 86 - 87 

1891 - 9 - 13 - 19 - 19 - 14 - 13 - 14 - 23 - 51 - 88 — 112 -110 

1892 — 16 - 25 - 32 - 28 - 21 - 21 - 22 - 32 - 57 — 95 —123 -122 

1893 - 4 — 15 - 17 - 13 — 7 - 6 - 4 - 14 — 47 - 99 —132 -131 

1894 - 8 - 19 - 27 - 28 - 25 - 22 - 21 - 28 - 60 -103 -130 -125 

1895 - 9 - 21 - 26 - 25 - 22 - 20 - 20 - 27 - 56 - 97 -119 -118 

1896 - 5 - 16 - 20 - 22 - 18 - 17 - 19 - 29 - 59 - 95 -118 -114 

1897 4 5 - 7 - 14 - 15 - 15 - 17 - 20 - 29 - 54 - 87 -110 -106 

1898 - 3 - 12 - 17 - 14 - 12 - 15 - 19 - 32 - 58 - 90 -110 -107 

1899 - 7 - 14 - 16 - 14 - 12 - 12 - 14 - 23 - 48 — 75 - 95 - 94 

1900 4 11 4 3 - 2 - 1 4 1 - 5 - 7 - 16 - 40 - 73 - 99 -100 
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from Sunspot Minimum Years. (Unit 0'1-y.) 

13b. 14b. 15h. 16b. 17b. 18h. 19b. 2011. 21h. 2 2b. 2 3b. 24b. Range. A.l). 

- 12 + 10 + 32 + 25 1 + 33 4 29 + 28 + 30 + 24 4 14 4- 8 _ i 63 19-3 

- 38 - 6 + 30 + 44 1 + 49 + 49 + 43 4 42 + 35 4- 23 4- 18 + 9 98 28 -4 

- 87 - 32 4 26 + 62 + 73 4- 68 + 63 + 58 4- 50 4 39 + 24 + 11 188 40 A 

-122 - 53 + 3 4 38 + 75 + 92 4- 89 + 81 + 70 4 57 + 45 + 31 246 52 -2 

-115 - 49 + 9 + 61 + 94 + 108 + 107 + 98 + 81 4- 58 + 45 + 33 273 62 0 

- 88 - 32 4 10 4 60 + 93 + 108 + 109 + 102 + 79 + 57 + 35 + 19 249 56 1 

- 88 - 33 1 4 28 + 71 + 105 + 121 + 117 + 104 + 83 + 58 + 33 + 13 248 ' 61 -2 

- 90 - o»> 
•J — + 27 + 57 + 76 + 79 4- 67 4 58 + 46 4 30 4 15 4 5 205 j 42 - 4 

- 64 - 8 4 34 + 64 4- 71 4 64 + 66 + 61 + 52 + 41 4 28 + 8 179 40 -6 

- 50 - 13 4 26 4 47 4- 45 4- 46 + 45 + 43 + 40 4 28 4 17 4 / 121 28 -6 

— 5 4 26 4- 42 + 39 + 38 + 35 + 30 + 23 + 23 4 9 0 — 9 85 22 ‘2 

- 14 0 4 

i 

9 + 16 4- 20 + 

1 

20 + 18 4 15 4 17 + 15 4 9 4 5 49 12 “2 

- 17 1 + 28 + 31 4 35 + 33 + 30 + 28 4 25 + 15 4 9 4 i 71 

o
 

CM 

- 81 - 27 + 22 4 53 + 67 + 68 + 66 + 61 4 53 + 41 4 29 + 14 179 40 '0 

- 95 - 37 + 19 4 62 4 92 + 104 + 100 + 91 4- 72 4 51 + 32 + 17 241 53 -8 

— 64 - 18 + 23 + 49 + 64 4 68 + 65 + 60 + 50 + 36 + 23 4 11 161 | 37 5 

Force, from Individual Years. (Unit O'ly.) 

. : i 
131i. : 14h. 15b. 16h. I7h. 18h. 191i. 20b. ! 21b. 22b. I 23b. ! 24b. Range. A.D. 

- 61 - 15 + 23 4 47 4 61 4 65 4 62 + 56 4 46 4 33 4 22 4 9 152 35 3 

- 78 - 18 + 30 4 70 + 89 + 99 + 93 + 79 + 60 + 38 + 20 4 4 211 48 -5 

- 84 - 19 + 40 + 80 + 104 4 115 + 108 + 97 + 76 + 50 + 25 4 2 238 58 1 

-101 - 35 + 31 +■ 72 4 99 4 103 + 94 + 82 + 66 + 44 + 25 4 10 234 52 1 

- 91 - 25 + 33 + 81 + 109 4 111 + 108 + 98 4 76 + 50 + 30 4 12 247 59 -4 

- 82 - 15 4 39 + 77 + 103 + 169 4 L03 + 89 + 69 + 42 4 21 + 5 228 54 7 

- 82 - 21 4 33 4 70 + 91 4 97 4 93 + 86 + 71 + 50 + 31 + 13 215 52 9 

- 77 - 28 + 21 4 54 + 76 4 •87 + 84 + 79 4 68 4 53 + 33 4 19 . 197 48 3 

- 71 - 17 + 30 + 63 + 82 + 91 + 85 4 77 + 63 + 45 + 27 4 12 : 20i 48 0 

- 63 - 17 + 28 + 55 + 73 4 79 + 77 4 69 + 56 4 39 4 21 4 6 174 42 0 

- 70 - 23 + 18 + 44 4 59 4 61 4 57 + 53 + 48 + 36 + 27 4 18 161 36 3 

G VOL. CCXVI.-A. 9 
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Table XIII.—Diurnal Inequality in Total 

1 

lb. 2b. 3b. 41i. Gil. 6b. 7h. 8b. 9b. 10b. lib. 12b. 

1 J anuary . 4 — 7 — 8 _ 3 + 4 + 8 + 4 - 8 - 34 — 57 — 65 - 63 

: February . - 1 - 13 - 16 - 6 0 + 4 + 5 — 5 - 37 - 86 -108 - 92 

j March . . + 12 + 3 - 2 - 1 4- 7 + 10 4- ii — 15 - 82 -153 -195 -176 

April . . + 32 + 14 + 6 + 4 + 10 + 17 + 8 - 34 -115 -198 -245 -232 

May. + 29 + 18 + 12 + 12 + 10 - 6 — 46 - 95 -160 -228 -261 -234 

, June. + 15 - 3 - 6 — 2 - 5 - 33 - 67 -117 -163 -217 -235 -204 

July. . . 4- 19 - 7 - 18 - 18 - 19 - 48 — 79 -118 -169 -207 -231 -207 

! August. . + 29 + 15 + 13 + 8 + 9 - 1 - 32 - 82 -149 -200 -218 — 1S8 

j September + 28 4 17 j + 9 + 7 _L 2 — 4 - 23 - 71 -139 -193 -204 -164 

October. . + 16 + 10 + 3 + 6 + 9 + 8 + 5 - 19 - 79 -146 —172 -146 

November. - 7 - 10 — 8 3 + 5 + 4 4 - 13 - 47 - 90 - 91 - 70 | 

December . — 4 | - 10 7 - 3 + 9 + 16 + 14 + 4 - 19 - 49 — 56 - 57 

| Year 
(11 years) 

■ + 14 j + 2 - 2 0 + 3 - 2 17 - 48 -100 -152 -174 -153 

Sunspot 
maximum + 15 + 2 - 4 - 2 + 2 - 2 - 20 — 55 -116 -179 -205 -181 

Sunspot 
minimum / 

+ 13 + 4 + 1 + 4 + 7 + i - 12 - 37 - 81 -123 -139 -121 

Table XIY.—Diurnal Inequality 

u. 2b. 3b. 4b. 5b. 6b. 7b. 8h. 91i. 10b. lib. 12b. 

/ / / / t / / / / / 

January . . -0 '04 -0'07 -0 -17 -0 '28 - 0 '43 -0 53 -0 -51 -0'33 + 0-03 4 0-32 40 51 4 0-36 

February . . -0'14 -0'15 -0J7 -0'25 -0'39 — 0 '51 - 0 52 -0 '34 + 0 "05 4 0 "35 4 0 55 4 0 "45 

March . . . -0 32 -0'33 -0 '36 -0'36 -0'43 -0 46 -0'31 + 0'08 4 0-61 4 0-96 4 1 01 4 0-67 

April . . . -0 AS -0 '40 -0 37 -0'36 -0 '33 -0 '26 + 0'04 4 0 -51 4 1 '05 4 1 46 4 1 -39 4 0-S9 

May.... -0 '38 -0 -31 -0 '25 -0 '17 -0'03 + 0'22 + 0'62 + 1 '00 4 1 19 4 1 -16 4 0-89 4 0 -49 

June . . -0 -36 -0 -31 -0'2S -0 '23 -0'06 + 0-27 + 0'70 4-1 '07 + 1 '34 4 1 35 4 1 -05 4 0 '65 

July. . . . -0-38 -0 '35 -0'31 1 o
 

to
 

-0'07 + 0-20 + 0 '60 + 1 '02 +1 '33 4 1 43 4 1-17 4 0 -69 

August. . . — 0 '55 -0 '44 -0 '41 -0 '30 -0 '09 + 0-18 + 0-64 + 1 -19 + 1 49 4 1 -48 41-11 + 0 '51 

September. — 0 '53 -0 '47 — 0 '45 -0 -46 -0 '43 -0 '22 + 0-18 4 0'70 + 1 47 4 1 36 4 1 16 4 0 "56 

October . . -0'44 -0 '44 -0 '49 — 0 '56 - 0 65 -0'60 -0'37 4- 0 '15 4 0-78 4 1 -18 4 1 -15 4 0-86 

November. . -0'16 -0'20 -0 29 — 0 '38 -0 '50 -0'58 -0'52 -0'25 4 0-23 4 0 "55 4 0 67 + 0 *53 ' 

December . . + 0 '01 — 0 '05 -0 '16 -0'27 -0'41 -0 51 -0 '43 -0'37 -0 -10 40-17 4 0 33 4 0 32 

Year 1 
(11 years) J 

© 

-0 '31 -0 '29 — 0 '31 -0'32 -0'32 -0'23 + 0'01 4 0'37 4-0-76 4 0-98 4 0-92 4 0 -58. 

Sunspot 
maximum / 

-0 '43 -0 '40 -0'42 -0 -43 -0'39 -0'29 + 0'03 + 0 '49 + 0 -98 4 1 '25 4 1 -20 4 0-82 

Sunspot 1 
minimum ] -0'21 -0'18 — 0 '19 -0 '22 - 0 24 -0 17 + 0'01 4-0-29 4 0 -60 40 76 4 0-66 4 0 36 
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Force, from 11 years. (Unit O'ly.) 

13h. 14h. 151i. 16h. 171i. 18h. 19h. 20h. 21h. 22 h. 23h. 24h. Range. A.D. 

- 32 + 10 + 28 + 25 + 32 + 36 + 37 + 37 + 31 + 17 + 10 + 2 102 23 -4 

- 62 - 14 + 29 + 50 + 59 + 61 + 56 + 57 + 47 + 34 + 24 + 14 169 36 7 

-119 — 40 + 37 + 86 + 104 + 105 + 103 + 95 + 82 + 65 + 41 + 22 300 65 '2 

-170 — 65 + 19 + 74 + 121 + 147 + 145 + 132 + 111 + 91 + 73 + 55 392 88-3 

-163 — 69 + 18 + 90 + 153 + 190 + 101 + 170 + 137 + 103 + 79 + 53 452 105 -3 

-137 — 48 + 33 + 104 + 162 + 193 + 201 + 182 + 143 + 100 + 66 + 43 436 103 -5 

-146 — 52 + 43 + 111 + 168 + 202 + 202 + 186 + 150 + 112 + 76 + 48 433 109 -8 

-121 — 35 + 44 + 91 + 124 + 140 + 134 + 126 + 107 + 84 + 60 + 42 358 85 '5 

- 94 — 20 4 38 + 82 + 100 + 111 + 120 + 113 + 98 + 83 + 65 + 40 324 76-0 

- 92 — 30 + 28 + 61 + 73 + 82 + 82 + 83 + 78 + 62 + 46 + 32 255 57-0 

- 38 + 11 + 39 + 53 + 58 + 55 + 51 + 44 + 38 + 21 + 9 - 1 155 32 3 

- 37 - 7 + 11 + 24 + 30 + 31 + 28 + 25 + 24 + 18 + 12 + 4 8S 20-8 

-101 - 30 + 31 + 71 + 99 + 113 + 112 + 104 + 87 + 66 + 47 + 30 287 66 -6 

-124 - 38 
+ 

35 + 87 + 122 + 138 + 136 + 125 + 103 + / o + 53 + 33 343 77-2 

- 76 19 + 27 ■+* o4? + 72 + 82 + 83 + 78 + 67 + 52 + 38 + 25 222 50-7 

in Inclination, from 11 Years. 

13h. 141i. 151a. 16h. 17b. 18b. 19b. 201i. 21b. 221i. 23h. 24b. Range. A.D. 

/ 

+ 0 13 

/ 

+ 0-07 + 0 

/ 

■14 + 0 

/ 

20 

/ 

+ 0-19 + 0 

/ 

11 + 0 07 + 0 

/ 

08 + 0 

/ 

09 + 0 '04 + 0 ■02 0 

/ 

00 1 

/ 

•03 0 

/ 

•196 

+ 0-27 + 0-17 + 0 •21 + 0 27 + 0-26 + 0 18 + 0 09 -0 01 -0 05 -0-09 -0 12 -0 12 ' 1 ■07 0 •238 

+ 0-32 + 0-13 + 0 •07 + 0 09 + 0-13 + 0 02 -0 11 -0 18 -0 24 -0 -30 -0 •35 -0 35 1 •47 0 •341 

+ 0-47 + 0-17 -0 ■02 -0 17 -0 -29 -0 38 -0 44 -0 47 -0 47 -0-49 -0 ‘51 -0 53 1 •99 0 ■498 

+ 0-24 + 0 '04 -0 •14 -0 31 — 0 ’50 -0 63 -0 n -0 61 -0 53 -0 -47 -0 •44 -0 40 1 •90 0 •489 

+ 0-33 + 0-02 -0 •26 -0 39 — 0 '56 -0 71 -0 83 -0 77 -0 64 -0-54 -0 •45 -0 39 2 •18 0 ’565 

+ 0-27 -0'05 -0 •29 -0 41 -0 -51 -0 61 -0 n -0 71 -0 62 -0 ‘53 -0 ■48 -0 41 1 2 15 0 ■559 

+ 0-09 -o-ll -0 ■18 -0 19 -0-25 -0 44 -0 66 -0 69 -0 67 -0-62 -0 •57 -0 56 2 •18 0 "559 

+ 0-17 + 0 -05 + 0 •07 + 0 10 + 0-03 -0 17 -0 34 -0 42 -0 45 -0 -50 -<» 51 -0 55 i •93 0 ■463 

+ 0 '53 + 0-31 + 0 •23 + 0 23 + 0-09 -0 07 -0 17 -0 22 -0 28 -0'37 -0 •43 -0 44 i •83 0 •460 

+ 0 '37 + 0 '35 + 0 •32 + 0 22 + 0-08 + 0 02 -0 01 -0 04 -0 04 -0-09 -0 ■11 -0 15 i •25 0 •278 

+ 0'23 + 0'21 + 0 •21 + 0 19 + 0-13 + 0 11 + 0 09 + 0 11 + 0 10 + 0 *08 + 0 ■04 + 0 03 0 •84 0 196 

+.0 '28 + 0'11 + 0 •03 -0 •01 -o-io -0 21 -0 •31 -0 33 -0 •32 -0 '32 -0 33 -0 •32 1 •31 0 •336 

+ 0'46 + 0-21 + 0 •06 -0 •04 -0-16 -0 31 -0 ■42 -0 44 -0 •44 - 0 45 -0 45 -0 •43 1 •70 0 •45S 

+ 0 11 

l 

O'OO -0 ■03 -0 •02 -0 -05 -0 15 -0 •22 -0 •22 -0 •22 -0 ’22 -0 •23 -0 •23 1 ■00 0 •233 

2 G 2 
* 
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Table XV.—Diurnal Inequality in 

lli. 21i. 31i. 4h. 5b. 61i. 7b. 8b. 9b. 10L. nil. 121i. 

1890 

/ 
- 0 23 

' 

-0*19 

/ 
-0U9 

/ 
-0-22 -0 23 

/ 
-0 -15 

/ 

+ 0-04 

/ 

+ 0-30 

/ 
+ 0'62 + 0 16 

/ 
+ 0 '65 

/ 
+ 0'32 

1891 -0 -30 -0-28 -0 -30 -0 34 -0 '33 -0*20 + 0-03 + 0-38 + 0'76 + 0 91 + 0'91 + 0o9 

1892 - 0 '45 -0'41 -0 -41 -0-40 -0-32 -0-23 + 0-06 + 0-51 + 1'00 + 1 29 + 1-20 + 0 '77 

1893 -0-44 -0 -41 -0-41 -0-43 -0 '43 -0 -29 + 0'06 + 0 '54 + 1-06 + 1 '33 + 1-31 + 0'88 

1894 -0-42 -0 '39 -0 -44- -0 '45 -0 -43 -0-33 o-oo + 0'47 + 0'96 + 1 25 + 1'20 + 0'90 

1895 -0-39 -0 '40 -0-40 -0 4*2 -0-40 -0 -30 + o-oi + 0'43 + 0'89 + 1 10 + 1 '09 + 0'72 

1896 -0 -31 -0 ’28 -0 '30 -0 -30 -0 32 -0'24 -0 '03 + 0'29 + 0 '70 + 0 94 + 0'90 + 0 *58 

1897 -0 '26 — 0 '24 -0-26 -0-29 - 0 30 -0-26 -0*08 + 0'25 + 0'58 + 0 '82 + 0 '75 + 0'46 

1898 - 0 -26 -0-25 -0 '25 -0 21 -0 21 -0-18 + 0*01 + 0-32 + 0'62 + 0 16 + 0-69 + 0'40 

1899 -0 ’26 -0-23 -0 -22 -0 *24 -0-27 -0 -21 -0 -oi + 0'30 + 0 '65 + 0 '82 + 0'71 + 0'42 

1900 -0-15 -0-15 -0 -17 -C -20 -0 -20 -0-16 o-oo + 0'26 + 0'55 + 0 11 + 0'63 + 0 ‘83 

Table XVI.—Diurnal Inequality in North 

ih. 21i. 3b. 4li. 5h. 6b. 7h. 8b. 9b. 10b. lib. 12h. 

January . . + 22 + 23 4 31 + 45 + 66 + 18 + 76 + 51 - 6 - 66 —112 -Ill 

February . + 44 + 36 + 36 + 48 + 67 + 83 + 84 + 59 — 2 - 74 -135 -141 

March . + 72 + 68 + 70 + 70 + 83 + 89 + 78 + 33 - 60 -158 -*221 -222 

April + 93 + 77 + 73 + 75 79 + 82 + 56 - 8 -114 -231 -291 -275 

May.... + 79 + 69 + 64 + 62 + 59 + 33 - 22 - 91 -158 -220 -248 -229 

J une. . . . + 69 +• 60 + 61 + 68 + 64 + 28 - 32 -100 -171 -228 -246 -228 

July. . . . + 74 + 66 + 61 + 64 + 60 + 28 - 30 -101 -176 -236 -251 -232 

August. + 104 + 89 + 88 + 79 + 65 + 39 - 27 -114 -200 -259 -261 -224 

1 September + 104 + 95 + 92 + 94 + 90 + 67 + 18 - 63 -164 -245 -212 -220 

! October . . + 85 + 81 + 83 + 91 + 103 + 98 + 74 + 13 - 88 -190 -242 -230 

j November . . + 38 + 37 + 45 + 58 + 75 + 85 + 76 + 43 - 28 -101 -144 -140 

[ December . . + 17 + 16 + 27 + 40 + 61 + 16 + 72 4- 54 + 14 - 42 - 82 - 98 

Winter. . . + 30 + 28 + 35 + 48 + 67 80 + 77 + 52 - 6 - 71 -118 -123 

} Equinox . + 89 + 80 + 79 + 82 + 89 + 84 + 56 - 6 -106 -206 -258 -237 

i Summer + 82 + 71 + 68 + 68 + 62 + 32 - 28 -102 -176 -236 — 255 -228 : 

Year 
(11 years) 

+ 67 + 60 + 61 + 66 + 73 + 65 + 35 - 19 - 96 -171 -210 -196 

Sunspot 1 
maximum J + 86 + 80 + 81 + 86 + 89 + 81 + 41 - 27 -121 -211 -260 -245 

Sunspot 
minim um + 48 + 40 + 41 + 48 + 57 + 51 + 29 - 12 — 75 -135 -163 -149 
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Inclination, from Individual Years. 

13k. 141i. 15k. 16k. 17k. 18 k. 19k. 20k. 21k. 22k. 2 Ik. 24k. Range. A ,n. 

/ 

+ 0*06 

/ 

-0'04 

/ 

-0 -05 

/ 

-0 ■00 

/ 

-0 ■06 

/ 

-0 •14 

/ 

-0 •20 

f 

-0 19 

/ 

-0 19 

/ 

-0 •18 

/ 

-0 •20 

/ 

-ft 33 

/ 

0 •99 

/ 

0 229 

+ 0-27 + 0-08 -0 -04 -0 ■04 -0 •14 -0 ■23 -0 ■28 -0 29 -0-28 -0 •30 -0 •32 -0 32 1 •31 0 333 
+ 0 •44 + 0-19 + 0 04 -0 •07 -0 •19 -0 •32 -0 •42 -0 •43 -0-45 -0 ■46 -ft 47 -ft 47 1 ■76 0 458 

+ 0 '45 + 0-16 -0 -oi -0 •11 -0 ■20 -0 ■33 -0 •44 -0 47 -0 -45 -0 •46 -0 •46 -0 46 1 ■82 0 483 

+ 0 '52 + 0-28 + 0-12 -0 •01 -0 •16 -0 •35 -0 •46 -0 ■48 -0-47 -0 •46 -0 ■44 -0 41 L •73 0 475 

+ 0-42 + 0 '23 + 0-10 + 0 •01 -0 •08 -0 •24 -0 ■36 -0 •39 -0'40 -0 43 -ft 43 -0 39 1 •52 0 417 

+ 0-29 + 0 14 + 0'05 + 0 01 -0 ■07 -0 •19 -0 •29 -0 33 -0 -30 -0 •31 -0 •31 -ft 32 1 ■26 0 325 

+ 0 '23 + 0-14 + 0-10 + 0 ■07 -0 "05 -0 •17 -0 •27 -0 •27 -0 -23 -0 •23 -0 ■26 -0 23 1 ■12 0 283 

+ 04S + 0-07 + 0-06 + 0 •06 -0 •03 -0 •11 -0 •24 -0 •26 -0-26 -0 •26 -ft 37 -ft 27 1 •03 0 265 

+ 0-19 + 0-06 + 0 ‘03 + 0 •03 -0 •04 -0 •14 -0 •22 -0 •24 -0-25 -0 ■28 -0 3! -0 30 L •13 0 268 

+ 0-08 -0 -04 -0 -06 -0 •04 -0 •05 -0 •15 -0 
_ 

33 -ft •33 -0 -20 — 0 •19 -0 •18 -0 16 0 •94 0 213 

Component, from 11 Years. (Unit O'ly.) 

13k. 14k. 15k. 16k. 

. 
I7h. 18h. 19k. 201i. 21k. 22li. 231i. 241i. Range. A.TO. 

- 79 - 47 - 34 — 35 _ 24 — 5 + 9 + 18 + 22 + 27 i + 27 + 25 190 43 -3 

-119 - 89 - 63 - 43 - 27 - 8 + 10 + 31 + 45 + 51 +* 55 + 52 225 58 -4 

-179 -123 - 64 — 20 + 6 + 32 + 56 + 69 + 79 + 85 + 84 + 79 316 87 ’8 

-226 -146 - 66 - 1 + 55 + 95 + 112 + 116 + 114 + 114 + 110 + 107 407 413-2 

7^
 

00 
r-4 1 -123 - 48 + 22 + 90 + 137 + 838 + 143 + 124 + 108 + 97 + 87 4U6 110 -8 

-183 -115 - 37 + 26 + 91 + 139 + 168 + 159 + 132 + 107 + 89 1 + 79 414 111 -7 

-181 -109 - 29 + 35 + 92 + 134 + 156 + 153 + 133 + 112 + 97 + 83 413 112 ’5 

-163 - 97 - 34 + 16 + 62 + 105 + 133 + 137 + 132 + 121 + 110 + 106 404 115 ’5 

-157 -101 — 56 — 15 + 22 + 60 + 91 + 106 + 109 + 114 1 + 120 + 111 392 107 -7 

-183 -124 - 73 — 36 0 + 34 + 57 + 73 + 86 + 96 + 99 + 93 345 97-2 

-116 - 87 - 58 — 31 — 2 + 13 + 25 + 35 + 42 + 46 | + 45 + 44 229 58-9 

- 86 - 67 — 50 - 34 - 15 - 4 + 6 + 10 + 18 + 22 + 24 + 22 174 39 -9 

-100 - 73 - 51 _ 36 — 17 - 1 + 13 + 23 + 32 + 37 + 38 + 36 203 49-7 

-186 -123 — 65 — 18 + 21 + 55 + 79 + 91 + 97 + 102 + 103 + -98 361 100 '4 

—179 -111 - 37 + 25 + 84 + 129 + 134 + 148 + 130 + 112 + 98 + 89 409 112 "7 

—155 -102 - 51 - 10 + 29 + 61 + 82 + 87 + 86 + 84 + 80 + 74 297 84-2 

-198 -134 - 67 - 11 + 38 + 78 + 102 + 109 + 108 + 104 + 99 ■! 93 369 106 '2 

-111 - 69 - 30 - 2 + 21 + 45 + 61 

_ 

+ <»4 + 64 + 62 -i- GO + 55 227 62 2 
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Table XVII.—Diurnal Inequality in West 

ih. 21i. 3h. 41i. 5h. 6h. 7h. 8h. 9h. 10b. lib. 12b. 

January - 62 - 49 - 35 - 28 - 20 - 15 - 18 - 32 - 37 0 + 55 + 120 

February . . - 83 - 70 - 63 - 55 - 48 - 42 - 38 — 52 - 66 - 26 + 57 + 141 

March . . . - 75 — 73 - 73 - 74 - 72 - 72 -102 -158 -113 -102 + 42 + 197 

April — 50 - 58 - 68 - 84 - 98 -127 -186 — 238 -232 -140 + 23 + 204 

May.... - 52 - 67 - 84 -113 -163 -211 —256 -251 -208 - 84 + 76 + 221 

June. - 47 - 64 - 86 -124 -187 -248 -284 -288 -242 -126 + 35 + 186 

J uly.... - 48 - 70 - 89 -121 -186 -238 -263 -265 -226 -124 + 26 + 182 

August. - 60 - 76 - 91 -114 -158 -204 -243 — 249 -190 - 62 + 100 + 257 

September. . - 72 - 78 - 88 - 96 -103 -127 -165 -190 -154 - 43 + 108 + 252 

October . . - 64 - 58 - 52 - 44 - 41 - 46 - 73 -130 —154 - 86 + 61 + 184 

November . . - 61 - 44 - 31 — 25 - 21 - 21 - 24 - 49 — 71 - 31 + 53 + 134 

December . . - 60 - 44 - 28 - 14 — 7 _ 2 — 5 - 13 - 26 — .2 + 48 + 104 

Winter. - 67 - 52 - 39 - 31 - 24 - 20 - 21 - 37 — 50 - 15 + 53 + 125 

Equinox . - 65 - 67 - 70 — 75 - 79 - 93 -132 —179 -178 - 93 + 59 + 209 

Summer . . — 52 - 69 - 88 -118 -174 -225 -262 -263 -217 - 99 + 59 + 212 

Year 1 
(11 years) j 

- 61 - 63 - 66 - 74 - 92 -113 -138 -160 -148 - 69 + 57 + 182 

Sunspot 1 
maximum J 

- 76 - 81 - 85 - 94 -114 -138 -167 -193 -181 - 90 + o4 + 201 

Sunspot 1 
minimum J 

— 45 - 44 - 47 - 57 - 73 - 91 -114 -133 -121 - 51 + 08 + 164 
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Component, from 11 Years. (Unit O'ly.) 

13li. 14b. 15b. 16h. 17b. 18b. 191i. 20b. 21b. 22b. 23b. 24b. bange. 

+ 151 + 134 + 87 + 58 + 37 + 15 — 13 — 43 — 70 - 84 - 83 — 75 241 

+ 190 + 195 + 148 + 88 + 54 + 28 4- 1 | - 27 - 60 - 81 - 92 - 94 289 

+ 282 + 288 + 226 + 134 + 57 + 23 - 2 - 21 — 45 - 60 - 67 - 76 461 

+ 305 + 311 + 246 + 170 + 101 4- 47 + 16 - 3 - 18 — 35 - 41 — 45 549 

+ 287 + 288 + 239 + 178 + 125 + 77 4- 46 + 23 + 6 - 9 - 23 | — 37 544 

+ 267 + 299 + 275 + 220 + 156 +109 + 75 + 55 4- 32 + 16 - 6 - 27 587 

+ 274 + 303 + 272 - + 207 + 142 + 94 4- 69 + 53 4- 34 + 14 - 9 - 29 568 

+ 3X8 + 315 + 244 + 147 + 70 + 34 4- 29 + 18 4- 4 - 17 - 33 - 48 577 

+ 309 + 277 + 195 + 108 + 48 + 23 4- 8 - 13 - 31 - 44 — 57 - 68 499 

+ 340 + 226 + 171 + 97 + 53 + 26 - 3 - 33 - 58 - 71 — 75 - 70 394 

+165 + 144 + 101 + 72 + 46 + 19 - 8 - 39 - 69 - 82 - 84 — 77 249 

+ 133 + 115 + 83 + 58 + 33 + 6 - 22 - 48 - 71 - 82 - 81 — 77 215 

+ 161 + 147 +105 + 69 + 43 + 17 — 10 — 39 _ 67 - 82 - 85 - 81 246 

+ 384 + 276 + 210 + 127 + 65 + 30 + 5 - 18 - 38 - 53 - 60 - 65 463 

+ 289 + 301 + 258 + 188 + 123 4- 78 + 55 + 37 + 19 + 1 - 18 - 35 564 

+ 345 + 241 + 191 + 128 + 77 + 42 4- 16 7 29 - 45 - 54 - 60 405 

+ 280 + 288 + 236 + 167 + 103 + 60 ; 4- 29 - 1 - 25 - 44 - 59 - 70 481 

+ 213 + 198 + 144 . + 88 + 46 4 24 ' + 8 - 10 - 27 - 39 | - 45 - 46 346 

A.D. 

55 3 

75 -0 

103 9 

118 ’6 

130 -2 

143 -9 

139-1 

128 -8 

110 -7 

88 -2 

61 3 

48 -4 

60 -0 

105 -4 

135 -0 

98 -2 

118 -2 

78 -6 
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As fig. 2 shows, the difference between sunspot maximum and minimum is mainly 

a matter of amplitude ; but in winter, in particular, the tendency in the afternoon 

curves to a plateau—-i.e., the maintenance of a uniform value—is especially charac¬ 

teristic of sunspot minimum. Active regular changes in H at midwinter are mainly 

confined to the hours 2 a.m. to 2 p.m. Whether we consider the range or the A.D., 

December and January are clearly the months in which the diurnal inequality is 

least. In the case of the eleven years and the sunspot maximum group of years, the 

minimum is in December, but in the S minimum group it falls in January. The 

differences, however, between the two months are not so decisive as to justify the 

conclusion that what is true of this particular eleven years is invariably true. The 

sunspot minimum group in particular, it should be remembered, contained only three 

years. The maximum amplitude appears in June and July ; but May and August 

are not far behind, especially in the sunspot minimum group of years. In sunspot 

maximum years April closely resembles May as regards range and A.D., but it 

exhibits a decided tendency to the evening plateau and morning minimum charac¬ 

teristic of winter. In sunspot minimum years April falls slightly behind September 

as regards amplitude, while September in all years falls markedly short of August 

and exhibits a distinct trace of the winter characteristics. These features, in 

conjunction with the desirability of having the same number of months in each 

season, seem to justify the division of months adopted. Any grouping which 

combined February with March, or October with November, seems less appropriate. 

One or two features in Table VIII. call for remark. Whether we take the range 

or the A.D., the amplitude of the mean diurnal inequalit}^ for the year was greatest 

in 1893, the year of largest sunspot frequency, and least in 1890 and 1900, the years 

of least sunspot frequency. As will be seen presently, the inequality range and the 

sunspot frequency show a very close parallelism in their variation. The changes in 

the type of the inequality from year to year are small, and their elucidation requires 

a more sensitive method, such as the analysis into Fourier waves presently discussed. 

A tendency can, however, be recognised for the hour of the forenoon minimum to be 

slightly earlier when sunspots are few than when they are numerous. 

§ 8. The V inequality data for the 12 months in Table IX. are shown graphically 

in fig. 3, while fig. 4 contrasts the diurnal inequalities for the seasons and the year 

derived from the whole eleven years and from the sunspot maximum and minimum 

groups of years, as given in Tables IX., X., and XI. The V inequality data are not 

quite so smooth as those for H, especially in winter. The fact that the H curves 

were smoothed, while the V curves were not, presumably partly accounts for this. 

The variation in the type of the inequality throughout the year is less in V than in 

H. In some months two distinct maxima and minima are visible in V, but the 

principal maximum always occurs in the afternoon between 4 p.m. and 7 p.m., ivhile 

the principal minimum, in the forenoon, is as uniform in its time of incidence as the 

corresponding minimum in H. The time intervening between the morning minimum 
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and afternoon maximum is less for Y than for H, and, speaking generally, the 

preponderance in changes by day over those by night is greater in V. A further 

notable difference is that the season in which the double maximum and minimum are 

most in evidence is summer for Y, but winter for H. Also the secondary maximum 

in the forenoon is in Y most prominent at sunspot maximum, while in H it is most 

prominent at sunspot minimum. In winter the changes during the night hours are 

exceedingly slow in Y as in H ; but while the fall to the forenoon minimum is the 

conspicuous feature in H, it is the rise after the morning minimum that stands out in 

Y. The minimum amplitude occurs as distinctly in December and January for V as 

for H. In Y the lower value is found in December, both in sunspot maximum and 

minimum, especially the latter, again a difference from what we found in H. The 

smallness of the amplitude in Y in December at sunspot minimum was, however, in 

considerable measure due to one year, 1890. During the last three months of that 

year the changes apparent in the Y curves, regular and irregular alike, became so 

small that some defect in the magnetograph was suspected at the time, and the Y 
data in the tables published in the Annual Report of the Kew Committee were 

confined to the first nine months of the year. There was, however, nothing but the 

smallness of the movements to suggest instrumental defect, and as the movements 

rapidly increased in 1891, without anything being done to the instrument, and the 

scale value determination showed nothing abnormal, the phenomenon was presumably 

real, and not of instrumental origin. As regards the month when the Y inequality 

is largest, the decision depends upon what we accept as the criterion of amplitude. 

May comes distinctly first if we take the range, but if we take the A.D. July comes 

first in the case of the eleven years, and still more so in the case of the sunspot 

maximum group of years. August falls markedly short of the other summer months, 

and is inferior even to April. 

Table XII. shows that in Y, as in H, 1890 and 1900 were the years when the 

amplitude of the inequality was least; 1893, however, the year of sunspot maximum, 

was not the year of largest amplitude in Y, being exceeded by 1892 and 1894, which 

were also much more disturbed. The difference in amplitude between years of many 

and few sunspots is less conspicuous in Table XII. than in Table VIII., and, as will be 

seen more clearly later, the parallelism between the amplitude of the inequality range 

and the development of sunspots was not so close in A as in H. A\ hether this last 

is a real natural phenomenon, independent of the lesser reliability of the A data in 

respect especially of temperature correction, is perhaps open to some doubt. 

§ 9. If we write the first of equations (2), p. 198, in the form 

T AT = H AH + V AY, 

and remember that at Kew V = 2‘4H roughly, while the range of the diurnal 

inequality in V is about three-fourths that in H, we see at once that so far as diurnal 

changes are concerned, the influence of Y on T very considerably exceeds that of IT. 

2 H VOL. CCXVI.—A. 
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O Z -/ 6 8 W Noon 14 16 18 - ZO ZZ Z4 

Fig. 5. Total force. 
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Also the diurnal inequalities in V and H follow a fairly similar course, thus we know 

a priori that the diurnal inequality in T must in general resemble somewhat closely 

that in V. In winter, however, the amplitude of the V inequality suffers a con¬ 

siderably larger relative reduction than that of H, and the difference' of type between 

the inequalities in the two elements is then at its maximum. Thus we may expect 

the resemblance of the T to the V inequality to be less close in winter, and the 

influence of the H inequality to be then more apparent. The accuracy of these 

anticipations is readily recognised if we compare Table XIII. and fig. 5 with Table IX. 

and fig. 3. 

Owing to the difference in type between the Y and H inequalities in December and 

January, their contributions to the T inequality tend sensibly to neutralise one 

another. Thus the amplitude of the T inequality at midwinter is markedly less than 

that of H, while in June and July the amplitudes in the two elements are very 

similar. Consequently the variation in the range in the course of the year is 

decidedly more conspicuous in Table XIII. than in Tables Y. or IX. 

A conspicuous feature in Table XIII. is the uniformity in the time of occurrence of 

the principal minimum. It is shown at 11 a.m. in every month except December, 

when the 11 o’clock value just exceeds that for noon. The existence of a second 

minimum in the early morning is recognisable in most of the monthly curves of fig. 5 ; 

there is at least an arrest in the rate of change of the element. The maximum, 

or principal maximum, always occurs in the afternoon, usually from 6 to 7 p.m. 

Amongst the curves of fig. 7 are three contrasting the mean diurnal inequality in T 

for the year in the years of sunspot maximum and minimum and the average year. 

The variation of type with sunspot frequency makes little appeal to the eye. 

§ 10. From the second of formulae (2) or (3) connecting the I inequality with those 

for Y and H, it appears that the contributions from Y and H oppose one another, 

but that the H contribution must be largely dominant. The phases in the I and H 

inequalities are opposite, so a comparison of fig. 6, showing the inequalities in I, with 

tier. 1 does not at first sight show the dominance of H. A little consideration will, 

however, make this clear, if we remember the difference of phase. Answering to 

the prominent, forenoon minimum in H, we have a prominent forenoon maximum 

in I, its time of occurrence being visibly earlier in summer than in winter. Again, 

as in IT, there is a distinct difference of type between summer and winter. In 

summer, the principal or only minimum occurs in the afternoon, just as the principal 

maximum does in H ; whereas in winter the principal minimum, like the principal 

maximum in H, is found in the morning. 

In most months between 2 and 6 p.m. there is at least an arrest in the fall of I, 

just as there was an arrest in the rise of H. The opposition in phase between 

the I and T inequalities is readily recognised in fig. 7, where the curves from the 

two elements representing the mean diurnal variation for the year in thea"\eiage 

year and in years of sunspot maximum and minimum are juxtaposed. 

2 H 2 
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O Z 4 6 8 to Noon 44- 16 78 20 22 Z4 
• • • I » > - , . t . , , 

Fig. 6. Inclination. 
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Fig. 7. Mean diurnal inequalities for the year. 
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The arrest in the afternoon fall of I, it will be seen, is more prominent at sunspot 

minimum than at sunspot maximum. 

According to Table XIY., the December diurnal inequality in I has a decidedly 

smaller range than the January inequality, but the values of the A.D. for the two 

months are equal. In this case the August diurnal inequality markedly exceeds 

that for May, and is practically equal in amplitude to the June and July inequalities. 

The diminished amplitude of the May inequality in I is associated with the corre¬ 

sponding enhanced amplitude of the inequality in V. So far as amplitude is 

concerned, one would naturally group May with April, September and October. 

In amplitude March shows a closer approach to February than to x\pril; in type 

it stands about equidistant from the two adjacent months. 

§11. The graphical presentation of N and W diurnal inequalities, as given in 

Tables XYI. and XVII., is limited to the mean diurnal inequalities for the year from 

the eleven years and the groups of years of sunspot maximum and minimum. These 

are shown in the six uppermost curves of fig. 7. 

If we take the mean diurnal inequality for the year, the range in H is only about 

three-fifths that in D, while cos D is three times sin D. It follows from the last of 

equations (2) that the influence of the D diurnal changes on W will largely exceed 

that of the IT changes. Hence the diurnal inequality in W must show a fairly close 

approach in type to that in D. In the case of N the H diurnal changes exert more 

influence than the D changes, but the preponderance is less. As a matter of fact, 

however, there is a very close resemblance between the diurnal inequalities in H and 

N. The inequality in D if reversed has a considerable resemblance to that in H, and 

the contributions from H and D to the N diurnal inequality have opposite signs, so 

numerically they assist one another. 

It is pretty obvious, comparing figs. 1 to 7, that if we measured east-west changes 

positive to the east, instead of to the west, and I changes positive from instead of 

towards the vertical, the diurnal inequality curves for the year in all the six elements 

considered here, and in D as well, would agree in having as one of their most 

prominent features a principal minimum occurring within an hour or two of noon. 

According to Table XVI., the diurnal inequality in N is least in December, January 

coming next. June and July show the largest ranges, but there is little variation in 

that respect from April to September. August shows the largest A.D., April 

coming next. The six months April to September agree in having the maximum or 

principal maximum in the afternoon, while the other six months have it between 5 

and 7 a.m. 

Thus the phenomena in N rather favour the sub-division of the year into two 

seasons, each of six months. In March and October, however, while the forenoon 

maximum is the larger, it but very slightly exceeds the afternoon maximum, 

and the grouping of these months with the four midwinter months would be 

unsatisfactory. 
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According to Table XVII., December has distinctly the smallest amplitude in the 

diurnal inequality in W, January coming next. June shows the largest range and 

A.D., July coming decidedly next so far as A.D. is concerned, though slightly inferior 

to August as regards range. April closely resembles the midsummer months so far 

as range is concerned, but fall distinctly short of them in A.D. In this element 

the most conspicuous difference of type is between the four midwinter months, when 

the principal minimum occurs between 10 p.m. and midnight, and the other eight 

months when the principal minimum occurs between 7 and 9 a.m. The maximum, or 

principal maximum, is the pre-eminent feature. Like the corresponding maximum of 

westerly declination, it occurs between 1 and 2 p.m. the whole year round. 

Comparing Tables XVI. and XVII., we see that the range of the mean diurnal 

inequality for the year in N is roughly three-fourths that in W ; in winter and 

equinox, however, the fraction is distinctly larger. There is less difference between 

the values of A.D. in the two elements, especially in equinox. 

§ 12. Figs. 8, 9 and 10 give the vector diagrams for the diurnal inequality forces 

in the horizontal plane. The arms of the cross are oriented in and perpendicular to 

the geographical meridian. The vector drawn from the centre of the cross, which 

serves as origin, to the points 1 to 24, represents in magnitude and direction the value 

at the hour specified of the horizontal component of the force to which the departure 

of the magnetic field from its mean value for the day may be ascribed. The scale cf 

force is such that each arm of the cross represents 10y. The vector travels completely 

round in the general clockwise direction in the course of the 24 hours. The motion 

is always direct between 6 a.m. and 10 p.m., but in the six months, October to March, 

there is a reversal of direction during some of the night hours. Details of this 

reversal are not clearly visible on the scale adopted in fig. 8, so they are shown on a 

more open scale in fig. 9, which is limited to part of the day. 

The monthly diagrams in fig. 8 bring home to the eye the great variability in the 

type of the regular diurnal variation throughout the year. If the June and 

December diagrams were alone presented, it would be difficult to believe that they 

referred to the same physical entity. There are, however, some features common to 

all the diagrams. The time when the vector is directed due south falls in all cases 

between 10 and 11 a.m., and so is well in advance of the suns crossing of the 

meridian. Again the vector in all cases has its maximum value near 1 p.m. The 

minimum value is usually seen near 6 p.m., but from April to July it occurs shortly 

after midnight. 

The May, June, and July diagrams closely resemble one another. The August 

diagram differs from them in having a distinct bay in the afternoon hours, resembling 

in that respect the September and March diagrams. The diagrams for the midwinter 

months, November to February, have a pretty close family resemblance. If we take 

the months in their order, we can recognise a continuous development from January 

to May, and from July to December; but it is obvious that in some months, especially 
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Fig. 8. Vector diagrams in horizontal plane (11 years). Arms of cross each lOy. 
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in equinox, the amplitude and type at the beginning and end of the month must 

differ somewhat largely. The phenomena, for instance, near midnight must be 

considerably different in the beginning and end of March. What the March diagrams 

in figs. 8 and 9 show is a blend of different types. We want shorter periods than 

the calendar month if we are to trace the changes minutely. 

Fig. 9. Vector diagrams in horizontal plane. Details of variation near midnight (24h). 
(ON = OE = lOy.) 

Fig. 10 shows the horizontal plane vector diagram for the year in the case of the 

whole eleven years, as well as in the cases of the sunspot maximum and minimum 

groups of years. The diagrams for the sunspot maximum and minimum groups 

of years are drawn from a common origin, as serving best to bring out points 

of agreement and difference. Except as regards the amplitude of the vector, the 

most noticeable difference between the sunspot maximum and minimum diagrams is 

that the indentation extending from about 11 p.m. to 5 a.m. is much more prominent 

in the latter. This indentation represents an approach to retrograde movement, a 

characteristic, as we have seen, of the winter season. Also, while a bay is recognis¬ 

able in the afternoon hours in all three curves, it is deeper in the sunspot minimum 

diagram than in the other two. 

2 I VOL. CCXVI.-A. 
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The eye can recognise in fig. 10 that the sunspot minimum vector is in advance of 

the sunspot maximum vector from 10 a.m. to 10 p.m., the angular difference being 

considerable in the early afternoon. The vector has, however, its maximum near 

I p.m. in both cases. 

M 

Jjyka/? 
mean 

Sunspot 
maximum, 
outer curves. 

Sunspot 
mtnirminv 
inner curves. 

The year diagram from the eleven years does not show a close resemblance to the 

diagram of any individual month in fig. 8, a suggestive fact in connection with the 

significance of mean diurnal inequalities for the whole year. The equinoctial months 

are those whose diagrams show most resemblance to that for the whole year. 
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§ 13. Fig. 11 shows vector diagrams in two vertical planes. The upper six curves 

refer to the vertical plane through the geographical west, the lower six to the 

vertical plane through geographical north. The upper three WY curves and the 

upper three NV curves represent the mean diurnal inequalities for the three seasons 

derived from the whole eleven years. The three lower diagrams in each case 

represent the mean diurnal inequality for the year, derived respectively from the 

sunspot minimum group of years, the whole eleven years and the sunspot maximum 

group of years. The origin of co-ordinates is marked in each case by a small cross. 

The two large crosses show the orientation, one for the WY diagrams, the other for 

the NV diagrams ; the arms of these crosses each represent 10y. It will be noticed 

that Y is measured positively downwards in both cases. 

The three WY diagrams for the year differ markedly in amplitude, but 

comparatively little in type, closely resembling the equinoctial diagram from the 

eleven years. The special feature is the beak occurring about 8 a.m. This beak is 

also prominent in the summer diagram, occurring, however, nearly an hour earlier. 

Associated with the beak is an indentation or bay, extending from about 6 p.m. to 

7 or 8 a.m. In the summer diagram the curvature is small near the deepest part of 

the bay, and except at the beak is large only from 6 to 8 p.m. In the diagrams for 

equinox and the year there is, as it were, a pushing forward of the shore line of the 

bay from 6 p.m. to midnight, leading to a marked indentation in the early morning 

hours. This advance of the shore line of the bay in the afternoon hours has so far 

developed in the winter diagram that all that remains of the bay is the very 

deep narrow indentation in the early morning hours. The beak is still represented 

in the winter diagram at 9 a.m., i.e., about an hour later than in the equinoctial 

diagram, and two hours later than in the summer diagram, but it is now over¬ 

shadowed by the protuberance near midnight. 

The three NY diagrams for the whole year again differ mainly in amplitude. 

They all show a distinct loop near mid-day, somewhat more developed relatively in 

the sunspot minimum diagram than in the other two. The sunspot maximum and 

eleven-year diagrams show also a very small loop near 4 a.m. In the sunspot 

minimum diagram this is represented by a sort of tail, with its tip at 5 a.m. The 

hour marks for several hours on end are so nearly on a straight line, that it is 

impossible to say whether there is a true loop, as in the eleven-year diagram, or a 

very narrow indentation. The equinoctial diagram very closely resembles that for 

the eleven years. The summer diagram shows a considerably larger development of 

the mid-day loop, but the early morning loop has disappeared and is represented by a 

small tooth. The winter diagram shows development in an opposite direction. The 

mid-day loop has disappeared, and instead of a loop in the early morning there is 

a long narrow promontory, which like the rest of the diagram is described anti¬ 

clockwise. 

A feature in NV diagrams to which attention was called some years ago by 

2 I 2 
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Mr. It. B. Sangster# is the approach which the diagram makes in the early afternoon 

hours to a straight line. This feature is prominent in the summer diagram between 

noon and 4 or 5 p.m. It is also fairly shown in the equinoctial diagram and in the 

diagrams for the year, especially that from sunspot maximum, hut hardly in 

the winter diagram. 

§ 14. Fig. 12 shows ordinary less quiet day difference curves, i.e., the ordinate 

represents the algebraic excess of the ordinary day over the corresponding quiet day 

value in the diurnal inequality. All the curves refer to the mean diurnal inequality 

for the year. In the case of V, T and I there is only one curve, which corresponds 

to the whole eleven years. In the case of H, N and W there are three curves, 

representing the sunspot maximum and minimum groups of years in addition 

to the whole eleven years. The results were not smooth enough to justify drawing 

curves of continuous curvature. The scale, which is the same for all the force curves, 

is much more open than in the corresponding ordinary day curves. 

In each case the ordinary less quiet day difference curve shows a considerable 

resemblance in type to the corresponding disturbed less quiet day difference curve 

given in a previous paper, but its amplitude is very much less. 

In the case of the H difference curves in fig. 12 the amplitude is so small that a 

longer period than eleven years would have been needed to bring out the character 

fully during the night hours. There is a distinct minimum in the curve near noon— 

signifying that the principal daily minimum is more developed in the ordinary than 

in the quiet day curve—but that is perhaps the only unmistakable feature. The 

irregularities in the sunspot maximum and minimum curves are too great to 

warrant deductions as to differences between them. 

The N, and still more the W, difference curves have a decidedly larger amplitude 

and are less irregular, especially the 11-year curves. The N difference curve has 

its mid-day minimum well developed, like the ordinary N curve, but it has a relatively 

better developed night maximum, and there seems to be no secondary maximum and 

minimum. 

The W difference curve differs markedly from both the ordinary and quiet day 

curves. There is no morning minimum near 8 a.m., as in the ordinary day curve, and 

instead of a sharply defined maximum in the early afternoon, there is a wide plateau 

for some four hours on either side of noon. The largest ordinate appears at 4 p.m., 

i.e., from two to three hours later than in the ordinary day curve. Whether the 

saddle near 1 p.m., which is more apparent in the sunspot maximum and minimum 

than in the 11-year curves, is a real or an accidental feature is open to some doubt. 

The V and T difference curves closely resemble one another, as might have been 

inferred from the fact that the difference between ordinary and quiet day inequalities 

is much larger for Y than for H. The two curves, while quite unlike the ordinary 

day Y and T curves, closely resemble the disturbed less quiet day V difference 

* ‘ Roy. Soc. Proc.,’ A, vol. 83, p. 428 
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Fig. 12. Difference curves, ordinary less quiet days. 
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curves. They show one well marked maximum near 6 p.m., and an equally well 

marked minimum about 4 a.m. 

The I difference curve in fig. 12 is also markedly unlike the ordinary day I curve. 

It has a considerable resemblance to the W difference curve, but corresponding points 

occur some hours later in the day in the I curve. Some doubt must be entertained 

as to the reality of the depression shown about 4 p.m. 

The difference curves in fig. 12 indicate on the whole an increased amplitude in the 

ordinary day inequality as compared with that of the quiet day, but they also 

indicate a distinct difference in type. The nature of the difference is most 

conveniently considered in connection with the harmonic analysis of the inequalities. 

One outstanding feature has already been discussed.* 

Annual Inequality. 

§ 15. Let M represent the mean value of any element for the whole year, and AM 

the algebraic increment in the twelve months due to secular change, then if the 

secular change took place uniformly throughout the year the mean value of the 

element during the nth month should be 

M+ (n-%-6) AM/12, 

where n represents 1, 2, 3 up to 12. 

This neglects the difference in length between different months. 

If the actual mean value for the nth month proves to be pn, the values of 

pn— (M+ (n—%—6) AM/12} 

for the 12 months constitute the annual inequality. 

If a magnetograph had a known and invariable base line value, the annual 

inequality of the corresponding element could be determined from curve readings 

alone. On the other hand, if an absolute instrument were invariably read when the 

corresponding element had its mean value for the day, the annual inequality could be 

got without any reference to the curves. But in practice we can tell the base line 

value of the curve only by reference to the absolute observations, and we cannot tell 

when the element had its mean value without recourse to the curves. 

When base values have been assigned to all the curves, a mean value can be found 

for each day, representing the mean of the hourly values. From these daily means a 

monthly mean can be derived, representing, according to the practice of the particular 

observatory, the mean of all the days of the month, or the mean of all but highly 

disturbed days, or the mean of a limited number of selected days, e.g., the 5 inter¬ 

national quiet days. Unless all days are used, the mean of the days employed may 

* ‘Roy. Soc. Proc.,’ A, vol. 91, p. 370. 
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not fall at the centre of the month, and a question may arise as to whether some 

allowance should be made for this. The desirability of selecting the 5 quiet days so 

that their mean shall fall near the middle of the month is recognised, but such a 

choice is not always possible. 

The practice in vogue at Kew from 1890 to 1900 was to treat the base value of 

each element as invariable throughout each calendar month, except in so far as it was 

influenced in the case of H and Y by departures of the temperature of the magneto¬ 

graph magnets from the mean temperature of the month. Using these base values, 

it would have been possible to deduce mean values depending on all the days, or on all 

but the highly disturbed days, in the usual way. Having regard to the special circum¬ 

stances, however, a different method—presently to be described—has been adopted as 

equally satisfactory and much simpler. It recognises that it is really on the absolute 

instruments that the accuracy of the annual inequality ultimately depends. The 

magnetographs serve only to show what allowance has to be made to any individual 

absolute observation to bring it to what it would have been if taken at an hour when 

the element in question has its mean value for the day. To take a simple example, 

suppose we observed the declination daily at noon, and that in the diurnal inequality 

for a particular month the entry under noon is + 3/-0. Then to get the mean value 

of D for that particular month all we have to do is to subtract 3;'0 from the 

arithmetic mean of the absolute observations. The correction — Sr'0 applied to 

individual noon readings will not in general give exactly the mean value for the day, 

but so far as the monthly mean is concerned that is immaterial. 

If we observe not daily but weekly, the 4 or 5 monthly days of observation at noon 

may all happen to depart from the average day of the month in the same direction, 

so that the method if applied to the observations of a single year could hardly claim 

to be satisfactory. If, however, we deal with the observations not of one but of a 

number of years, omitting days of large disturbance, accidental features must largely 

disappear, and this is the course that has been adopted. 

The ordinary absolute observation of H consists of two parts, the vibration 

experiment and the deflection experiment. The mean times of these two experiments 

were found, and departures at each of them from the mean value for the day were 

deduced from the diurnal inequality, and the arithmetic mean of the two was applied 

with appropriate sign as a correction to the observed value of H. The inequalities, 

it will be remembered, were calculated for each individual month for H (and Y). 

When the curves were considerably disturbed at the time of an absolute observation— 

not, of course, a frequent event—the observation was simply omitted. As highly 

disturbed days had also been omitted from the ordinary day diurnal inequalities, we 

may reasonably regard these inequalities as appropriate for the correction of the 

absolute observations. 

It had not been the practice to commence the H observation at a fixed hour, and 

the time required for the deflection experiment varies somewhat according as 

VOL. CCXVI.-A. 2 K 
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observing conditions are more or less favourable. Still in most months the mean 

times of the vibration and deflection experiments fell so nearly at fixed hours that 

one might have applied the same correction to each observation, basing it on a mean 

time from all the observations. As a matter of fact, however, this simplification was 

not adopted when dealing with the 11 years 1890 to 1900. After 1900, as already 

explained, magnetic conditions were less favourable at Kew. Still electric tram 

disturbances are, on the whole, of a nature calculated to impair the accuracy of 

individual observations rather than that of the arithmetic mean of a number of 

observations. It thus appeared worth while investigating the annual inequality 

deducible from absolute observa/tions made in years subsequent to 1900. 

As corresponding diurnal inequalities from ordinary days were not available, the 

corrections applied to the absolute observation results to bring them to the mean value 

for the day were based on the inequalities of the years 1890 to 1900. In the case 

of H, the years 1901, 1902, 1903, 1910, 1911, 1912, and 1913, having a mean sunspot 

frequency of 8‘8, had corrections applied from Table VII.,-which is based on the years 

1890, 1899, and 1900, with a mean sunspot frequency of 9’6. The years 1905, 1906, 

and 1907, having a mean sunspot frequency of 59'9, had corrections applied from 

Table VI., which is based on the years 1892 to 1895, with a mean sunspot frequency 

of 75'0. The two years 1904 and 1909, having sunspot frequencies of 42'0 and 43'9 

respectively, had corrections applied from Table V. for the 11 years 1890 to 1900, with 

a mean sunspot frequency of 41'7. The year 1908 was omitted, because the deflection 

distances were increased from two to three at midsummer, and this possibly might 

have introduced some discontinuity. The final outcome was that the twelve years 

dealt with had corrections applied as if their mean sunspot frequency were 31, whereas 

it was really 27. As we shall see later, the amplitude of the diurnal inequality in H 

and the sunspot frequency are connected, at least approximately, by a linear relation¬ 

ship. Extrapolation from one period of years to another is of course always a matter 

of some uncertainty; still there is considerable ground for believing that the accuracy 

of the inequality derived from the second period of years is not greatly inferior to that 

derived from the first. 

In the case of I the observation had been taken almost invariably in the afternoon, 

the mean time of observation falling within 30 minutes of 3 p.m. Near this hour 

I changes slowly, and its departure from the mean value for the day is not large. To 

have got out diurnal inequalities of I for each month of the 11 years would have 

entailed an immense amount of labour. Thus corrections to the observed values were 

simply derived from the mean inequalities from the 11 years given in Table XIV., and 

the corrections were calculated for the mean time of all the observations of the month, 

not for the times of the, individual observations, unless these times varied more than 

was generally the case. The I observational data from the 14 years 1901 to 

1914 were similarly treated, use being again made of the diurnal inequalities in 

Table XIV. 
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§ 16 Values having been obtained from the absolute observations of each month 

corrected for diurnal variation, the means for all the months of the same name were 

summed and meaned, the 11-year period and the later period being treated 

separately. The monthly means thus obtained represented the average annual change 

from mid-January to mid-December, comprising the annual inequality and the secular 

change. It remained to eliminate the secular change. 

In the case of the 11-year period, the mean annual secular change of H between 

1890'5 and J900‘5 derived from the quiet days was +25'9y. A small difference has 

been observed at several stations between mean annual values of H derived respectively 

from quiet days and from all or all ordinary days, the former mean exceeding the 

latter. The difference, however, is only of the order 3y, and as 1890 and 1900 were 

both quiet years of very similar character, any uncertainty of this kind spread over a 

10-year period must have been negligible. A confirmation of the accuracy of the 

quiet day estimate was derived by taking arithmetic means for 1890 and 1900 of the 

twelve monthly means of the absolute observations, corrected for diurnal variation. 

The mean thus obtained for 1900 exceeded that obtained for 1890 by 259'5y, giving 

+ 25'95 for the mean secular change. 

In the case of the second group of years, the mean secular change in II—as obtained 

from the annually published quiet day results, allowing for changes of constants and 

procedure—was only +5'82y. In the case of I the mean secular changes accepted 

were — 2/-255 for the first period and — lr'055 for the second. 

The substitution of these respective values for AM in the formula in § 15 led to the 

annual inequalities for H and I given in Table XVIII. The annual inequalities given 

for V in that table were calculated from the formula expressing changes in V in terms 

of changes in H and I, employing mean values for the numerical coefficients of AH 

and Al. At the foot means are given for the ordinary three seasons. The centre of 

each season falls at the middle of the year, so these seasonal values are unaffected by 

the secular change, or by any error that may have been made in estimating its 

amount. 

The greater or less smoothness of the inequalities, and the amount of accordance 

between the results from the two periods, are the chief criteria for estimating the 

reliability of the data in Table XVIII. Both criteria are less favourable towards the 

inequality in V than towards those in TI and I. The V inequality from the 11-year 

period is very irregular, plus and minus signs occurring rather promiscuously; and 

while the corresponding seasonal means from the two periods agree in sign, the winter 

and summer means from the second period are numerically much larger than those 

from the first. The lesser consistency of the V inequality is hardly surprising since 

it suffers from every uncertainty or accident that affects either the H or the I 

inequality. A change of lOy in H alters I as much as a change of 24y in V. Thus 

the deduction of changes in V from the combination of observed changes in I and H, 

though the only way feasible, does not promise high accuracy. 

2 k 2 
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There is a regularity in both sets of figures for H which can hardly be accidental. 

They agree in making the successive monthly values all positive from May to August, 

and all negative from September to February. Both periods show a clear maximum 

in the summer months, but one puts the minimum in winter, the other in equinox. 

The inequality obtained by combining the two periods, allowing them equal weights, 

makes the winter and equinoctial values practically equal. It shows a range of 12'5y, 

the maximum coming in June, and the minimum in November. 

Table XVIII.—Annual Inequality. 

Month 
Horizontal force. Inclination. Vertical force. 

and 
season. First 

period. 
Second 
period. Mean. First 

period. 
Second 
period. Mean. First 

period. 
Second 
period. Mean. 

7 7 7 ' r ' 7 7 7 
January .'. . -2-0 - 1-8 -1-9 + 0-19 o-oo + 0-09 + 1-9 - 4-4 -D2 
February . . . -o-i -1-6 -0-9 + 0-03 + 0-06 + 0-04 + 0-8 - 1-8 -0-5 
March. -4-5 ■+■ 3 * 5 -0-5 + 0-41 -0-07 -4-0-17 + 4-1 + 6-0 + 5-0 
April. -2-3 + 0-5 -0-9 + 0-08 + 0-09 + 0-08 -2-6 + 4-4 + 0-9 
May. ..... *3-1 + 5-6 + 4-3 -0-08 -0-17 -0-12 + 4-7 + 7-3 + 6-0 
June. + 8-8 + 7-0 + 7-9 -0-56 -0-16 -0-36 + 1-0 + 10-9 + 5-9 
July ..... + 2-6 + 2-3 + 2-5 -0-26 -0-18 -0-22 -3-0 - 0-8 -1-9 
August .... + 4-4 + 0-5 + 2-5 -0-23 -0-07 -0-15 + 2-2 - 1-3 + 0-4 
September . . -4-2 -2-7 -3-4 + 0-12 -0-06 + 0-03 -5-6 - 8-5 -7-1 
October .... -3-4 -3-7 -3-6 + 0-25 + 0-14 + 0-19 + 0-8 - 4-0 - 1-6 
November. . . -1-9 - 7-3 -4-6 + 0-21 + 0-36 + 0-29 + 3-0 - 4-4 -0-7 
December. . . -0-9 -1-7 - 1-3 -0-16 + 0-06 -0-05 -8-0 _ 9*9 jLJ tJ -5-1 

Winter .... - 1-2 -3-1 _ 2 • 2 + 0-07 + 0-12 + 0-09 -0-6 - 3-2 -1-9 
Equinox. . . . -3-6 -0-6 -2-1 + 0-22 + 0-03 + 0-12 -0-8 - 0-5 -0-7 
Summer. . . . + 4*7 + 3-8 + 4-3 -0-28 -0-14 -0-21 + 1-2 + 4-0 + 2-6 

In the case of I the two periods agree in showing a distinct minimum in summer, 

but the one places the maximum in winter, the other in equinox. Combining the 

two periods, allowing them equal weight, we get a comparatively smooth inequality 

with a range of 0/-65,the maximum coming in November, the minimum in June. The 

type is on the whole fairly similar to that of results that have been published for 

Parc St. Maur and Potsdam, and for the northern hemisphere as a whole by Liznar 

and Hanr, but the range shown in Table XVIII. is a good deal less than in the cases 

quoted. 

Assuming that the phenomena are not of instrumental origin, it seems reasonably 

certain, after allowing for a secular change progressing at a uniform rate throughout 

the year, that TI is higher and I lower in summer than in winter. Also it seems 

probable, though more open to doubt, that V displays the same phenomena as H. This 

agrees with the results obtained from quiet days alone in a previous paper. 
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§ 17. The possibility that the phenomena owe something to instrumental causes 

must be recognised. If there is any instrumental cause at work, it is presumably of 

thermal origin. In the case of I, any sensible temperature effect on the absolute 

observations is difficult to imagine. The strength of the dip needles, it is true, may 

not be the same, when they are stroked at 25° C. as when they are stroked at 10° C. 

I have no statistics on the subject. Also the distance of the centre of gravity from 

the axis of suspension will naturally increase with rise of temperature. Thus there 

would be nothing very surprising if the inclination observed with one particular end 

of the needle dipping varied slightly with temperature. But the reversal of the poles, 

invariably observed at Kew, ought to eliminate this as a first approximation, leaving 

only second order terms, which one would not expect to be sensible. The absolute 

observation hut at Kew is heated by a lamp in cold weather, so that the difference 

between summer and winter temperatures of observation is only of the order of 10° C. 

For the diurnal inequality in I we are dependent on the H and V magnetographs, 

the latter of which has a large temperature coefficient. An error in the value 

accepted for that coefficient, or in the results accepted for the diurnal variation of 

temperature of the V magnet, might introduce a differential error as between summer 

and winter. Any such error would affect the accuracy of the corrections applied to the 

observed inclinations to reduce them to the mean value for the day. The hour at 

which the observations is taken is, however, one at which the change is not rapid 

either in the inclination or in the temperature of the magnetograph room. Thus any 

considerable error seems improbable. 

§ 18. In the case of H, the ways in which temperature might come in are more 

numerous. There might be an error in the temperature coefficient of the collimator 

magnet, but the consequences of this would not be nearly so serious as might appear 

at first sight. What really concerns us in this connection is not the mean temperature 

of the whole H observation, but only the difference between the temperatures in the 

vibration and deflection experiments, which is usually only 1° or 2° C. In the present 

case, moreover, the error would come in not on the average size of this difference, but 

only on its seasonal variation. Temperature practically always rises during an H 

observation, and so is higher during the deflection experiment, which comes last, than 

during the vibration experiment. If there were no artificial heating the difference 

would naturally be greatest in summer, so a seasonal differential error is conceivable. 

If it existed, however, it should show itself in an apparent seasonal variation in 

the values found for the magnetic moment of the collimator magnet reduced to 0° C., 

and a special investigation showed no trace of this. 

Errors in the values assumed for the variation with temperature of the length of 

the deflection bar and the moment of inertia of the collimator magnet would come 

in on the full annual range of temperature in the magnetic hut, but coefficients of 

thermal expansion in brass and steel are small quantities, and any large percentage error 

in them is most improbable. The temperature coefficient of the H magnetograph is 
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small, and the general accordance of individual H observations and curve measure¬ 

ments seems, to preclude the possibility of any large percentage error in the value 

accepted. 

There is, in short, no direct evidence of the existence of uncorrected temperature 

effects, while there is a good deal in favour of the substantial accuracy of the 

allowances made. At the same time, direct experiment, if possible without undue 

risk of interfering with the records, would be desirable. 

Fourier Coefficients. 

§ 19. The analysis of the diurnal inequalities into series of harmonic terms whose 

periods are 24, 12, &c., hours is part of the regular routine at some observatories. To 

some people circular functions seem on a wholly superior plane to all others, and the 

analysis of diurnal inequalities according to any other type of function would appear 

almost inconceivable. Others may argue that the employment of circular functions 

for the representation of magnetic diurnal inequalities may hide rather than reveal 

what is of real physical importance. There are several common-sense arguments in 

favour of the analysis in series of sines and cosines. The use of these is so very 

general that for the intercomparison of results at different stations there is really no 

competing series. Again, it is found that as a rule 4 Fourier waves—i.e., terms with 

periods of 24, 12, 8 and 6 hours—suffice to give a very close approximation to the 

observed diurnal inequality, and the 8-hour and 6-hour waves are usually small 

compared with the first two. There is thus a good deal to be said for the argument 

that the Fourier analysis is a natural one. This argument of course would lose much 

of its force if a single function of the time, of a not unduly complicated form, with only 

2 or 3 parameters sufficed to represent the diurnal inequality adequately at a number 

of stations. But until such a function has been proved to exist, the course which is 

followed here of employing ordinary Fourier series is likely to commend itself to the 

majority. 

The diurnal inequality is usually expressed in one of the alternative forms 

«! cos t + bx sin t + a2 cos 21 + b2 sin 21 +... 

Cl sin (t + ai) + c2 sin (2t + a.2) + ... , 

where t represents time counted from midnight, one hour in t being taken as the 

equivalent of 15°. The constants a, b of the first series, or c, a of the second, are 

generally called Fourier coefficients, c representing the amplitude and a the phase 

angle. The usual process is to calculate the a, b constants from the hourly values 

in the diurnal inequality, and then deduce the c, a constants from the equations 

tan a = a/b, c EE \/a2 + b'2 — afsin a = b/cos a. 

If a, b coefficients have been calculated for three magnetic elements, they can be 

deduced at once for any other element, through the formula expressing it in terms of 
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the first three. Thus it sufficed to calculate the a, b coefficients in the usual way for 

D, H and V, and the work so far as D is concerned had been already done. 

The values of a and b for the year, or for any season, are the arithmetic means ot 

the values from the included months. They can thus be deduced at pleasure from the 

values of a and b calculated for the included months, or be specially calculated from 

the inequality for the season. The employment of both methods puts the accuracy of 

the calculations to a very severe test. In fact, to secure agreement to say three 

significant figures it is necessary to carry the calculation at least one place further. 

This test was not in general applied, but all the calculations were carefully checked, 

special attention being given to any apparent irregularities. 

Table XIX.—Horizontal Force (Local Mean Time for Phase Angles). 

Year. Ci. CCi. C>2» CC-2. C&. a3- Ci- a4. 

7- o 7• 
o y- ° y- 

o 

1890 6-81 119-2 4-01 312-4 2-18 175 1-13 28 
1891 9-66 117-1 5-62 303-7 2-37 166 1-02 23 
1892 13-00 117-2 6-52 301-6 2-81 166 1-32 22 
1893 13-35 114-1 7-45 301-7 3-26 163 1-33 18 
1894 13-26 113-9 7-09 294-9 2-60 167 1-26 24 
1895 11-73 113-3 6-15 298-9 2-57 171 1-20 22 
1896 9-81 114-8 5-22 297-2 2-48 166 1-24 17 
1897 8-56 112-3 4-61 294-8 1-99 173 1-30 28 
1898 8-36 115-9 4-14 302-1 2-17 166 1-04 25 
1899 8-10 115-8 4-09 302 • 5 2 - 36 174 1-10 32 
1900 6-56 119-0 3-85 306-7 2-16 178 1 12 20 

Tables XIX. and XX. give the amplitudes and phase angles for the 24-, 12-, 8- and 

6-hour terms in the H and V mean diurnal inequalities for the whole year, each of 

the eleven years being treated separately. 

Table XX.—Vertical Force (Local Mean Time for Phase Angles). 

Year. Ci. «i- A Ob-2. cs. 

| 

a3. c4. a4. 

| 
y- o y- o y- ° y- o 

1890 5-08 139-4 3-39 273-3 1-36 106 0-47 282 
1891 6-84 145-1 4-79 272-1 1-64 96 0* 60 295 
1892 8-10 148-8 5-29 268-5 1-77 101 0-69 280 
1893 7-26 138-8 5-62 270-1 2-26 97 0-71 279 
1894 8-38 145-8 5-32 269-0 2-02 95 0-60 292 
1895 7-70 148-1 5-09 271-6 1-83 97 0-68 295 
1896 7-54 143-5 4-60 270-6 1-78 105 0-61 284 
1897 7-07 138-5 3-95 268-6 1-48 101 0-52 286 
1898 6-95 142-7 4-25 274-2 1-50 108 0-49 286 
1899 6-00 144-0 3-87 271-3 1 - 31 107 0-52 284 
1900 5-38 130-0 3-48 276-1 1-60 103 0-61 281 
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G.M.T. was employed, as already stated, in the diurnal inequalities, and thus the 

values deduced in the first instance for the Fourier coefficients referred to G.M.T. 

Local mean time is, however, more generally instructive, and accordingly the necessary 

transference to local time has been made in Tables XIX. and XX., and all the 

subsequent tables relating to Fourier coefficients. The transference does not affect 

the amplitudes. The corrections it requires to the phase angles are 

+ 19' in op, +38' in a2, +57' in a3 and +1° 16' in a4, 

Kew local time being the equivalent of 19' after Greenwich. 

The relation with sunspots will be discussed more fully later, but the significance of 

the tables will be better understood if regard is paid to the following facts. 1890 was 

a year of sunspot minimum with a frequency of 7'1. The frequency rose rapidly to a 

maximum of 84'9 in 1893, and fell more slowly to 9'5 in 1900. In 1898 there was a 

slight arrest in the fall, the mean frequency being 267 as compared with 26'2 in 

1897. The year 1893, though the year of sunspot maximum, was on the whole a 

quiet year free from large disturbances, much quieter than 1892, 1894 or 1895. 

In Table XIX. c1} c2, c3 and c4 all rise to a maximum in 1893, and the general 

parallelism with the sunspot variation is readily seen, especially in c4 and c2. Table 

XX. shows a similar state of matters, except that the value of c1 in 1893 fell short of 

that in several adjacent years. 

The variation in the phase angle is by no means so decisive. In Table XIX. the 

largest values of op and a2 are associated with the years of sunspot minimum, but the 

smallest values occur in 1897, an intermediate year as regards sunspots. Accident 

seems to play a sensible part in the relation between phase angles in successive years, 

especially in the case of a3 and a4. The same remark applies in even greater measure 

to Table XX. 

In fact the influence of sunspot frequency on the phase is so small that for its study 

it is desirable to combine the years in groups representative respectively of large and 

small sunspot frequency, in hopes of eliminating accidental features. 

§ 20. Tables XXI. and XXII. show the variation in amplitude and phase angle 

throughout the year in the Fourier waves representing the diurnal inequality in H, and 

Tables XXIII. and XXIV. do the same for V. Results are given for the whole 11 years, 

also for 1890, 1899 and 1900 representing few sunspots, and 1892 to 1895 representing 

many sunspots. Arithmetic means from the 12 months are given in Tables XXI. and 

XXIII. When there is considerable variation of phase throughout the year, contribu¬ 

tions from different months to the seasonal and yearly diurnal inequalities to some 

extent neutralise one another. Thus frequently a better idea of the average activity 

of the forces to which any particular Fourier wave is due is derivable from the 

arithmetic mean of the c’s than from the corresponding c in the mean diurnal 

inequality for the year. 
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Table XXI.—Horizontal Force. (Unit ly.) 

Ci. c2. CB- Ci. 

Month. 
& 

mini¬ 
mum. 

11 
years. 

S._ 
maxi¬ 
mum. 

S\ 
mini¬ 
mum. 

11 
years. 

S. 
maxi¬ 
mum. 

s. 
mini¬ 
mum. 

11 
years. 

S. 
maxi¬ 
mum. 

S. 
mini¬ 
mum. 

11 
years. 

S. 
maxi¬ 
mum. 

January . . . 1-23 3-15 5-41 1-80 3-41 4-46 2-27 2-26 2-52 1-16 1-29 1-33 
February. . . 2-93 4-50 6-33 2-46 3-54 5-02 2-45 2-68 3-14 1-31 1-26 1-18 
March .... 6-55 9-13 11-78 4-31 5-66 7-46 3-39 3-75 4-53 1-44 1-63 1-88 
April. 10-27 14-43 18-44 5-37 7-55 9-20 3-17 3-61 4-17 1-32 1-65 2-09 
May. 12-21 15-83 19-14 4-94 6-44 8-11 1-32 1-25 1-57 0-86 1-04 1-18 
June. 13-18 17-18 21-56 5-58 7-06 9-26 1-85 1-73 2'45 0-88 0-71 0-96 
July. 12-94 17-17 21-86 4-83 7-06 9-10 2-36 2-01 1-99 0-95 0-73 0-88 
August. . . . 12-41 15-97 19-70 4-74 6-35 7-90 3-12 3-18 3-44 1-40 1-43 1-32 
September . . 10-60 13-17 15-31 5-05 5-71 6-33 3-63 3-84 3-96 1-84 1-88 1-97 
October . . . 8-03 10-89 13-88 4-88 6-14 8-02 2 • 72 3-66 4-30 1-13 1-62 1-91 
November . . 3-05 5-20 7-98 3-72 4-54 5-68 1-85 2-21 2-61 0-92 1-13 1-18 
December . . 2-66 3-30 4-73 2-59 3-32 4-25 1-53 1-62 2-07 0-67 0-57 0-46 

Arithmetic 1 
means . J 

8-01 10-83 13-84 4-19 5-56 7-07 2-47 2-65 3-06 1-16 1-25 1-36 

In the case of and c2, whether in Table XXI. or Table XXIII., there is no single 

month in which the amplitude fails to show an increase as we pass from the sunspot 

minimum to the sunspot maximum group of years. In the case of c3 and c4 the same 

is generally true, but there are a few exceptions, presumably accidental in both 

tables. 

Table XXII.—Horizontal Force. Phase Angles referred to Local Mean Time. 

“i- Clo. «3 ai- 

Month. 
s. 

mini¬ 
mum. 

11 
s. 

maxi¬ 
mum. 

s. 
mini¬ 
mum. 

11 
s. 

maxi¬ 
mum. 

s. 
mini¬ 
mum. 

11 
s. 

maxi¬ 
mum. 

s. 
mini¬ 
mum. 

11 
s. 

maxi¬ 
mum. 

years. years. years. years. 

o / O / 0 t o / ° / o / o o o 0 O 0 

J J anuary. -24 24 51 43 67 12 298 41 282 8 279 30 167 -5 157 9 152 •1 8 5 3 5 -2-7 
j February. 69 21 70 49 77 46 2S0 32 269 56 271 57 146 -7 146 3 141 '2 -9 4 -5 2 5 9 
March.. 103 28 101 8 102 29 297 55 294 15 295 28 154 -0 153 5 153 •6 0 4 -1 4 -6-2 

| April. 115 32 114 51 115 30 299 0 297 51 297 45 145 '3 150 i 152 •3 13 1 20 4 20 '3 
, May. 132 15 131 27 130 17 317 28 307 52 302 44 217 -0 204 5 198 '5 59 9 67 0 63 3 
| June . 131 37 134 43 136 25 306 54 308 24 312 5 200 '8 213 3 216 •0 37 0 53 3 67 '2 
i July. 134 16 134 5 134 20 321 2 310 37 307 59 204 -5 191 9 179 ■9 42 1 30 1 30 -8 
j August. 129 21 127 58 126 44 338 46 327 27 322 17 212 -4 203 8 197 •8 32 2 33 9 24 7 

September .... 116 18 113 58 111 58 320 32 320 48 318 10 187 -8 1S8 3 183 '7 34 6 33 5 38 -0 
October ..... 94 47 94 30 93 43 294 57 295 57 297 8 162 '8 162 9 160 •8 25 4 21 3 16-2 | 
November .... 80 37 76 20 77 37 289 21 282 28 279 45 158 -9 153 9 149 •1 40 7 24 0 6'8 
December .... 13 50 37 45 54 31 280 16 268 59 265 50 145 -6 141 8 134 •2 34 3 15 8 4'4 

The annual variation in the amplitude is clearly shown in all cases, but it follows 

different laws in the different waves. Ci and c2 in both H and have a well marked 
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minimum near midwinter and a maximum near midsummer. c3 and c4 also exhibit 

a minimum near midwinter, but there is a second minimum—which in the case of c3 in 

Table XXIII.—Vertical Force. (Unit ly.) 

Cl. C-2. Os- C-i. 

Month. 
S. 

mini¬ 
mum. 

11 
years. 

S. 
maxi¬ 
mum. 

S, 
mini¬ 
mum. 

11 
years. 

S. 
maxi¬ 
mum. 

S. 
mini¬ 
mum. 

11 
years. 

S. 
maxi¬ 
mum. 

S. 
mini¬ 
mum. 

11 
years. 

S. 
maxi¬ 
mum. 

January . . . 2-72 3-53 4-39 1-10 1 -32 1-70 0-51 0-57 0-71 0-28 0-44 0-54 
February. . . 3-88 5-01 5-98 1-94 2-72 3-29 1-03 1-31 1-58 0-36 0-47 0-63 
March .... 5-70 7-03 7-26 4-21 5-37 6-24 2-17 2-44 2-78 0-94 0-98 1-04 
April. 7-81 8-39 8-50 5-38 6-49 7-47 2-24 2-75 3-03 0-70 0-82 0-87 
May. 9-28 10-88 12-18 6-02 7-62 9-26 1-93 2-10 2-25 0-52 0-63 0-60 
June. 8-49 10-33 11-49 5-28 6-65 8-22 1-27 1-42 1-80 0-47 0-36 0-32 
July. 8-76 11-07 13-54 5-12 6-38 7-55 1-40 1-66 2-01 0-43 0-37 0-37 
August. . . . 5-61 7.37 7-78 5-27 6-21 6-75 2-05 2-47 2-89 0-62 0-62 0-64 
September . . 5-89 7-64 8-35 3-90 4-86 5-34 1-96 2-07 2-25 0-85 0-81 0-91 
October . . . 3-90 5-78 7-27 2-07 3-49 4-17 1-59 1-89 2-29 0-86 1-04 1-18 
November . . 3-08 4-47 5-32 1-61 2-11 2-64 0-74 1-00 1-32 0-61 0-68 0-80 
December . . 1-79 2-95 4-02 0-88 1-26 1-78 0-53 0-78 1-06 o-io 0-21 0-41 

Arithmetic "1 
means . J 

5-58 7-04 8-01 3-56 4-54 5-37 1-45 1-70 2-00 0-56 0-62 0-69 

Table XXI. is actually the principal minimum—near midsummer. The largest values 

in c3 and c4 present themselves in equinoctial months. 

Table XXIV.—Vertical Force. Phase Angles referred to Local Mean Time. 

CCi. OCo. os. a4. 

Month. 
S. 

mini¬ 
mum. 

11 
years. 

S. 
maxi¬ 
mum. 

S. 
mini¬ 
mum. 

11 
years. 

S. 
maxi¬ 
mum. 

S. 
mini¬ 
mum. 

11 
years. 

S. 
maxi¬ 
mum. 

S. 
mini¬ 
mum. 

ii 
years. 

S. 
maxi¬ 
mum. 

January . . . 

o 

164-1 

o 

160-8 

o 

157-9 

o 

287-9 

o 

283-4 275-0 145 

o 

118 

o 

101 267 

o 

277 

o 

281 
February . . 154-6 155-7 154-5 269-8 275-9 278-1 104 100 98 237 261 282 
March .... 133-3 143-9 150-3 272-7 270-7 268-6 94 93 87 268 275 282 
April. 121-8 130-5 132-1 265-4 263-3 260-3 95 94 92 293 300 298 
May. 126-9 129-3 129-5 274-9 270 • 3 268-4 103 102 99 302 314 327 
June. 136-2 139-5 140-9 271-2 268-9 268-3 107 100 98 307 315 307 
July. 145-2 142-8 146-3 266-3 263 • 6 262-7 91 82 78 260 245 219 
August. . . . 128-8 134-5 136-3 276-8 273-5 273-5 104 102 101 285 280 281 
September . . 139-4 143-1 145-3 279-4 276-6 277-7 116 109 108 290 297 298 
October . . . 141-7 149-5 153-6 267-2 269-5 267-6 102 102 95 281 287 284 
November . : 170-4 171-8 174-6 308-7 297 • 1 292-5 138 125 108 302 286 278 
December . . 143-0 155-9 163-7 281 -2 274-3 269-4 125 119 120 306 267 269 
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In the case of the phase angles the difference between sunspot maximum and 

minimum years is much less decisive. a3 in Y in every month of the year is larger— 

i.e., speaking generally, the maximum occurs earlier in the day—in sunspot minimum 

than in sunspot maximum. There is also a large preponderance of months in which 

the sunspot minimum angle is the larger in the cases of a:) in H and of a2 in both H 

and Y. a,, however, in Y shows exactly the opposite phenomenon, while in H and 

ai in both H and Y show no decided tendency. 

In H all four phase angles exhibit the same tendency in their annual variation. 

They are distinctly larger in summer than in winter. This is especially conspicuous 

in the case of v.x; in sunspot minimum the phases of the 24-hour term in January and 

July approach opposition. 

An increase in phase angle means in a general sense an earlier occurrence in the 

maximum and minimum, but this requires special interpretation at times. Take, for 

instance, the 11-year values of a1 in H. In January and February the values are 

respectively 51° 43' and 70° 49'. The corresponding times of occurrence of the 

maximum are respectively 

In January t = (90 —51'72)/l5 = 28'28/l5 = 1'89 hour = 1 hour 53.minutes. 

In February t — (90 —70‘82)/l5 = 1918/15 = 1*28 hour — 1 hour 17 minutes. 

But when we pass to March the phase angle 101 8' falls in a different quadrant, and 

the time of the maximum is given by 

t — (450 — 101'13)/l5 = 23'3 hour = 23 hours 18 minutes. 

In a sense the maximum has become earlier in March, only it has as it were 

transferred itself to the previous day; the wave, in fact had already passed its 

maximum when the day commenced. The minima in the three months occur in 

January at 13 hours 53 minutes, in February at 13 hours 17 minutes, and in March 

at 11 hours 18 minutes. Thus the statement that the minimum has become earlier 

as the phase angle increased was in this case literally true. 

In the case of Y in Table XXIY. the annual change is on the whole in the opposite 

direction to that in H, the angles a1, a2 and a3 being all smaller in summer than 

in winter. There seems to be a very appreciable accidental element in the values 

obtained for individual months, especially in the case of a4. 

The mode of annual variation of the amplitudes of the several Fourier waves is best 

shown by expressing the values for different months as fractions of their arithmetic 

mean. This has been done for the full 11-year results in Table XXY., data being 

given for both FI and V. The laws of annual variation for the two elements proved 

sufficiently alike to encourage the formation of the arithmetic means from the two. 

These arithmetic means are considerably smoother than the data from H or Y alone. 

2 l 2 
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Relatively considered, the amplitudes of the first four Fourier waves show a fairly 

similar range of annual variation. On the whole the range is largest in cx and least 

in c3; but c3 and c4, having a double annual period, vary most rapidly. 

Table XXV.—Ratios to Arithmetic Mean (ll years’ data). 

Month. 

cx. C2- c3. 
I 

Ci- 

H. 
v- 

Mean. II. V. 
- 

Mean. H. Y. Mean. H. y. Mean. 

January . . . 0-29 0-50 0-40 0-61 0-29 0’45 0-85 0-33 0-59 1-03 0-72 0-87 
February . . 0-42 0-71 0-56 0-64 0-60 0-62 1-01 0-77 0-89 1-01 0-75 0-88 
March .... 0v84 1-00 0-92 1-02 1-18 1-10 1-41 1-43 1-42 1-31 1-58 1-45 
April. 1-33 1-19 1-26 1 • 36 1-43 1-39 1-36 1-61 1-49 1-32 1-32 1-32 
May. 1-46 1'55 1-50 1-16 1-68 1-42 0-47 1-23 0-85 •0-83 1-02 0-93 
June. 1-59 1-47 1-53 1-27 1-46 1-37 0-65 0-83 0-74 0-57 0-58 0-57 
Jnly. 1-59 1-57 1-58 1-27 1-41 1-34 0-76 0-97 0-87 0-59 0-60 0-59 
August . . . 1-48 R05 1-26 1-14 1-37 1-25 1-20 1-45 1-32 1-15 1-00 1-08 
September . . 1-22 1-09 1-15 1-03 1-07 1-05 1-45 1-21 1-33 1-51 1-31 1-41 
October . . . 1-01 0-82 0-91 1-10 0-77 0-94 1-38 1-11 1-25 1-30 1-68 1-49 
November . . 0-48 0-64 0-56 0-82 0-46 0-64 0-84 0-58 0-71 0-91 1-10 1-01 
December . . •0-30 0-42 0-36 0-60 0-28 0-44 0-61 0-46 0-53 0-46 0-34 0-40 

§ 21. Fourier coefficients were not calculated for the individual months of the year 

except for H and V. For the other elements they were calculated only for the 

diurnal inequalities from the seasons and the year. Table XXVI. compares the 

amplitudes in these seasonal diurnal variations for H, V, T, N, W, and I, use being 

made in dealing with N and W of the results previously obtained for D. In the case 

of cx and c2 the equinoctial value is always intermediate in size between the winter and 

summer values, and somewhat in excess of the value for the whole year. In the case 

of c3 and c4 the equinoctial value is invariably in excess of both the winter and summer 

values, and much in excess of the value for the year. In the case of c3 the summer 

value is the lowest for two elements, N and Id ; in the case of c4 the winter value is 

less than the summer value in no element except I. 

In the case of all the Fourier waves for the three rectangular components V, N, and 

W, the year value of the amplitude is largest in W and least in V. This is in 

general true also of the three seasonal values, but in equinox cx is larger in N than in 

W, and there are one or two cases in which the V value is not the lowest. 

Table XXVII. shows the ratios borne by the amplitudes of the 12-, 8-, and 6-hour 

waves to the amplitude of the corresponding 24-hour wave. In the case of H, T, N, 

and I, the importance of the 12-, 8-, and 6-hour waves falls relative to that of the 

24-hour wave as we pass from winter to equinox, and from equinox to summer; but 

in W and V the relative importance of the shorter period waves is greatest in equinox, 

and in the case of the 12-hour wave it is least in winter. 
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Table XXVIII. contrasts the sunspot maximum and minimum values of the 

amplitude for the year and seasons in both H and V. In H the sunspot maximum 

value of the amplitude is always the greater. Its excess, however, relatively considered, 

diminishes as the order of the harmonic increases, and except in c2 it is least marked 

in summer. 

In V the sunspot maximum value is also always the greater, except in the case of 

the summer value of c4; but the pre-eminence of the sunspot maximum value is not 

specially conspicuous in cx. 

Table XXIX. contrasts the ratios borne to by c2, c3, and c4 in the seasonal diurnal 

inequalities in the sunspot maximum and sunspot minimum groups of years. In the 

case of V the ratios seem little dependent on sunspot frequency, whereas in H with 

one exception they rise as sunspots diminish, especially in winter. In that season, in 

fact, in sunspot minimum the amplitude of the 24-hour term is exceeded by that of 

the 12-hour term and even by that of the 8-hour term. 

§ 22. Table XXX. contrasts the phase angles in the diurnal inequalities for the year 

and seasons in the six elements H, V, T, N, W, and I. An increase in the phase 

angle as we pass from winter to equinox, and from equinox to summer, is shown by 

H, N, and T in all four Fourier waves. It is also shown by V in the case of a4, and 

by W in the case of a2. A fall as we pass from winter to equinox, and from equinox 

to summer, is shown by V in the case of au a2, and a3, and by W in the case of av 

T is remarkable for the smallness of the seasonal variation in the phase angles, 

especially in the case of a2. 

Table XXXI. contrasts the seasonal and yearly diurnal inequality phase angles in 

years of sunspot maximum and minimum. In the case of a2 the sunspot minimum 

angle is invariably the greater for both H and V. The same is true of a3, except in 

the case of H in equinox, when the sunspot minimum angle is slightly the smaller. 

The same rule is observed by a4 in H, except in summer ; but in V the sunspot 

maximum value of a4 is the larger, though its excess is generally small. The sunspot 

maximum value of «i is the larger in summer and winter in H, and in all cases 

in V. 

Table XXXII. shows the difference between the phase angles found in the present 

paper for ordinary days and those found in a previous paper* for quiet days. It gives the 

excess of the ordinary day over the quiet day phase angle converted into time at the 

rate of 1 hour = 15° in ah 30° in a2, 45° in a3, and 60° in a4. The plus sign is equiva¬ 

lent to an earlier occurrence of phenomena in ordinary days. The values under the 

seasons, it should be noticed, are from the seasonal inequalities, and are not arithmetic 

means from the months included. 

The outstanding feature is the preponderance of plus signs in the case of the 24-hour 

term in V, and the large size of most of the differences from this term. 

* ‘Phil. Trans.,’ A, vol. 202, p. 335. 



T
a
b
le
 

X
X

X
.—

P
h
as

e 
A

ng
le

s 
R

ef
er

re
d
 t

o
 L

oc
al
 M

ea
n 

T
im

e 
(l

l 
ye

ar
s’
 d

at
a)

. 

250 DR. C. CHREE: DISCUSSION OF KEW MAGNETIC DATA 

1 

•jaraumg 

IO I-H <M £- CO rH 

° io I—11 CO CM CO £— 
hJC 05 h* IO CM 

CM CC CM 

•xomubg 

H ffl lO 00 'it N 

° © 00 CD Cl M H 
i—l CO CM , IO H 

CM CO 1 <M 

| O O 03 O O CO 

0 OOlOOlOI^N 
£>- Cd H CP 
Cd CO | i-h 

to O W CO ^ H 

° CM CO 00 lO i-h hH 
CM 00 CM lO t—( 

CM CO CM 

CO 

•^railing j 

o CO CO »C CM t- 

O CO 1> CO CP 1—1 
O 05 (N lO co Tt 
Od I-H r-H Cd 

•xoumbg; 1 

l 

00 GD i>- Cd ^ '—1 

0 CO GO CO lO Od 1—1 
o Ci (M CO (M | 
i—1 r—H i-H Cd 

•ja^uiyv 

^ XT'— i—h oo CO 00 

O o co CM I-H 00 CM 
lO H to CO CM Cl 
—* ^ r-H H <M | 

*JR9^ 

CO 00 £- hJH c© lO 

° CP O lO co CO PO 
o o IN CO (M 
7—1 i—H i—H 7—^ Cd 

a 

•jatnumg 

O IO 00 <M hH ts. 
cm co o h io 

CO OO i-H Htl i—1 KO 
0 h CD « 00 •# C 

CO CM CM <M H 

•xoumbg; 

^ Cd CO »-H Cd o 
-rfl CO i-H '-r+l Cd 

HfflOOHCO | 
o o CO 00 l- co CO 

CO CM CM CM I-H 

••iaspii^ 

„ (M CO CD O IO O 
CM IO lO Hi! 

CO Cl Cl 1> h(1 -t< 
O I>” 00 I>- lO r-H OP 

cd cd cd cd 

^ CO CD O 00 CO 00 
io io H lO >o 

o h o lO oi ^ 
0 o 1> co 1^ co co 

CO Cd Cd Od r—i 

8 

•jaraumg 

_ ©OCOOOffiO 
Hfl Hfl CO <M HH 

Cl CO H Tf o 
O CO CO CO I-H O IH 

1—I 1—1 H r-H <M CO 
«■ 

•xoumbg; 

^ oc»cococoi> 
(M O (M ^ ^ H 

L'- O ■t'— i”H r—I X>- 
o O (M 05 Cd 1> 

-1 -1 -H CM CM 

•ja^uyy 

CO H 00 H CO Cl 
i-H Od kO r-H kO 

cq h i> io 05 o 
o o CD co CD TjH Od 

i—h r-H Cd Cd 

v CO CO CO CO r-H iO 
Cd ^ CO H H 

ID Cd Cd lO OP lO 
0 h CO 05 H 00 

i—H i-H i—H Cd Cl 

E
l
e
m

e
n
t
.

 

CD 

H 

o3 
© 

(33 
o 
O 

Hi 
O 

+3 

© 
?H fH 

*H-H 
<D 

Ph 
CO 
<D 

I—I 
bn 
S3 

CD 
co 
c3 

Ph 

H 
M 

H 

GO CO Cd r-H 

•J9nirang j o lO H o C5 
05 GO 
(Cd cd 

^ CO io Cl 

•xounibg; o Xr— OP OP Cd 
i-h i-h GO CO 

Cd Cd 

a 
Cd CO CO Cd 

'J94ufAY 
o CO ^ GO GO 

r-H I> U— 

Cd Cd 

CP ^ co CD 

o O ^ CD CO 
Cd Cd GO GO 

Cd Cd 

OP lO OP lO 

•jaraumg j ° 00 GO ^ -H 
CP O 05 o 
1—1 Cd I-H 

(M U- 00 CM 

•xoumbjj 0 CO Cd ^ r-1 
CD <D 05 O 
i—H t-H r-H 

CO 
a 

IOHCO ^ 

•ja^uiyv ° lO (D rH 

lO O Cl 
r-H r-H i-H r-H 

1> C5 H C5 

■jra^ o CD CO 1> ^ 
CD 1> C O 
7—H 7—H r-H 

- 
lO 1> ^D 
Cd Cd 

•jaraumg 
0 

r-H O 00 Cd 
h Cl CD X^ 
CO co Cd Cd 

•xouxnbg; 
o 

OlOCOX- 
H r-H -ri-i 

r-H CO XT'— r-H 

O O CD L— 
CO CO Cd Cd 

a 
' 

GO o o o 
CO ^ lO co 

0 
^ CD 05 CD 

go co 
Cd Cd Cd Cd 

' 
IO CD CO Cd 
H CO ^ ^ 

•jra^. 
0 

05 CD OP CO 
05 O CDD* 
Cd co Cd Cd 

' iO co OP OP 
1—i lO co co 

•jaraumg 
o 

Cd H GO ^ 
co co co co 
r—H i—H r-H r-H 

•xoumbg; 

_ 

0 

1
0
6
 

5
7

 

1
0
8
 

5
7

 

1
4
4
 

5
0

 

1
3

2
 

2
4

 

a 
- 

in © to oo 
lO i—l DO r-H 

■•laBTAV 
o 

o oo cd op 
1> CD lO 

r-H r-H 

O’ r-H r-H OP 

^ CO CO lO 

0 

X- ID N 

i—H r—H CO 
r-H r-H r-H r—H 

S
u
n
s
p
o
t.

 

—
 

M
a
x
im

u
m

 
. 

. 

M
in

im
u
m
 

. 
. 

M
a
x
im

u
m

 
. 

. 

M
in

im
u
m
 

. 
. 

•^ueniaia 



FROM ORDINARY DAYS OF THE ELEVEN YEARS 1890 TO 1900. 251 

There is obviously a considerable “ accidental ” element in the results for individual 

months, especially in the shorter period waves. There is, however, an unmistakable 

seasonal variation in the phenomena in the 24-hour term in H. In the summer 

months, the difference, though small, is clearly positive, whereas in winter it is not 

merely negative bat very large, exceeding an hour of time. The fact is the seasonal 

variation in ax in H is much more pronounced in ordinary than in quiet days, the 

monthly values showing a range of 97° in the first case as compared with 71° in the 

second. 

Table XXXII.—Ordinary less Quiet Day Phase Angle in Minutes of Time. 

Month and 
season. 

24-hour term. 12-hour term. 8-hour term. 6-hour term. 

H. V. H. V. H. Y. H. v- 1 

January. . . . - 68 - 5 + 8 -38 - 4 + 5 - 5 - 8 
February . . . - 60 + 16 - 1 -23 - 4 + 6 + 6 + 3 
March. _ 2 + 95 + 1 - 3 - 4 + 2 _ 9 - 4 
April. + 19 + 76 + 7 - 3 + 3 + 1 + 13 + 7 
May. + 8 + 66 - 14 - 9 + 5 - 1 + 4 + 14 
June. + 3 + 48 - 9 - 3 + 8 -13 + 24 + 7 
July. + 12 + 58 _ 2 - 5 + 15 - 1 + 18 + 10 
August .... + 5 + 60 + i - 9 - 1 - 3 - 3 - 9 
September. . . - 31 + 100 -25 - 9 -14 _ 2 + 1 - 14 
October .... - 25 + 112 + 1 - 7 0 - i + 4 + 8 
N ovember. . . - 69 + 55 - 7 -26 - 4 + 14 0 - 3 
December . . . -100 + 67 - 1 -64 - 5 + 6 + 14 - 17 

Year. - 6-2 + 72-2 - 3-0 - 9-7 -5-3 + 0-2 + 3-8 + o-i 
Winter .... - 82-6 + 29-8 - 1-8 -15-8 - 4-5 + 8-1 + 2-2 - 4-8 
Equinox. . . . - 9-0 + 94-9 - 3-4 - 5-5 - 4-7 o-o + 3-1 + o-i 
Summer.... + 7-5 + 58-7 - 6-4 - 6-7 + 5-3 - 4-0 + 4-8 + 5 ■ 6 

The differences in both ax and a2 in V also show a decided seasonal variation. They 

are algebraically greater in summer than in winter; but in the case of ax the 

equinoctial values are the largest of all. 

The variation of on in Y in the course" of the year is only 42^-° in ordinary as 

compared with 50jc in quiet days. The reduction in the annual range of a2 in V on 

ordinary as compared with quiet days is fully larger. 

As regards a3 and a4 the differences between the ordinary and quiet day phase 

angles are small, and in the case of V practically evanescent for the mean diurnal 

inequality of the year. There is an irregularity in the incidence of the plus and minus 

signs in the case of the a4 differences which shows the advisability of reserve even as 

regards the seasonal figures. In the case of a3 the plus and minus signs show a regular 

incidence, so that more reliance can be placed on the seasonal values. It will be 

noticed that the seasonal variations in the two elements are exactly opposite. 

VOL. CCXVI.-A. 2 M 
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Before leaving the subject, attention may be called to the remarkable difference 

between the phenomena exhibited in the case of 04 by the different elements. In D 

the ordinary day phase angle substantially exceeded the quiet day angle throughout 

the whole year, the excess being greatest in the equinoctial and least in the summer 

months. The excess in the mean diurnal inequality for the year represented about 

29lr minutes* of time. In H the ordinary day phase angle slightly exceeded the 

quiet day angle in summer, but fell notably short of it in winter, and in the diurnal 

inequality for the whole year was inferior to an extent representing about 6 minutes 

of time. In V the ordinary day phase angle substantially exceeded the quiet day 

angle throughout the year, the excess being greatest in the equinoctial and least in 

the winter months. In the mean diurnal inequality for the year the excess represented 

about 72 minutes of time. 

Wolf’s Formula. 

§ 23. If R denote the range of the mean diurnal inequality for the year, and S the 

sunspot frequency (after Wolf and Wolfek), the formula 

R = a+b S = a{l+(b/a)8},.. . (l) 

with a and b constants, was found by Prof. Wolf to represent closely the variation of 

the declination range with sunspot frequency. It lias been applied by myself to the 

ranges of the other magnetic elements, and to the individual months or seasons of the 

year as well as to the whole year. In the case of the quiet day inequalities, the 

formula applied fairly to all the magnetic elements, being as closely true of H as 

of D. The value of b/a was, however, not the same for the different elements. Also, 

when the 12 months were treated separately, bja fluctuated from month to month, 

being greatest in winter and least in summer. 

The formula has now been applied in the case of both H and V to the diurnal 

inequalities from ordinary days, for the year, the seasons, and the individual 12 months. 

The results appear in Table XXXIII. ; ly is the unit in the case of a and b, and in the 

mean (numerical) difference between the values calculated by aid of the formula and 

those actually observed. While a and b are given respectively to 2 and to 4 places 

of decimals, so as to show the exact values employed in the calculated ranges, the 

last figure possesses little if any physical significance. Two sets of results are given for 

the year and the seasons. In the first set the values assigned to a and b are arithmetic 

means from the individual months included. The corresponding value given for b/a 

is derived from these mean values of a and b, and is not the arithmetic mean of the 

values of b/a for the individual months. The second set of figures refers to the diurnal 

inequalities calculated for the year and seasons. 

* There is a mistake in the description of Table XII. of my previous paper dealing with the declination. 

The data in it refer not to the seasonal inequalities, but to arithmetic means from the individual months 

comprised in the season. 
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Taking, as an example, January in the case of H, the observed ranges in the 

Januarys of the 11 years were assumed to be given by a formula of type (l), S 

representing the mean sunspot frequency for each January in succession. The 

Table XXXIII.—Constants in Wole’s Formula F = a + 6S. 

Horizontal force. 
• 

Vertical foi ce. 

Mean difference Mean difference 
observed ~ observed ~ 

Month and calculated. calculated. 
Season. 

a. b. 100 b/a. 

Abso¬ 
lute 

As per¬ 
centage 

of 
range. 

a. b. 100 b/a. 

Abso¬ 
lute 

As per¬ 
centage 

of 
range. 

value. value. 

January. 
y 

11-12 
y 

0-1358 1 • 22 
y 

2- 2 12‘2 
7 

5-80 
y 

0-0666 1-15 
7 

0-8 13-6 
February .... 12-13 0-1495 1-23 1-5 11-4 9-43 0-1060 1-12 1-8 17-1 - 
March. 18-31 0-2674 1-46 2-4 12-9 19-26 0-1169 0-61 2 - 2 16-4 
April. 26-83 0-2946 1-10 3-0 12-6 25-45 0-0693 0-27 1-9 15-8 
May. 30 • 38 0-2232 0-74 3-8 11-7 27-74 0-1438 0-52 1-6 9-4 
June. 32-29 0-2561 0-79 3-0 12-1 25-12 0-1213 0-48 1-4 11-2 
July. 32 • 43 0-2450 0-75 4-3 14-6 24-56 0-1461 0-59 1-9 12-1 
August. 32-35 0-1825 0-56 4-2 16-7 23-28 0-0487 0-21 2 * 2 22-2 
September. . . . 26-71 0-1831 0-69 3-1 16-4 16-73 0-1287 0-77 2-0 16-2 
October . 19-32 0-2635 1-36 2-2 11-2 12-16 0-1271 1-05 1-6 12-6 
November. . . . 12-05 0-2195 1 - 82 2-3 12-3 8-63 0-0942 1-09 1-5 14-7 
December .... 

• 

9-67 0-1079 1-12 2 • 2 15-4 4-99 0-0712 1-43 1-2 12-6 

From a.m.s. of 
a’s and b’s— 

Year. 21-97 0-2107 0-96 2-8 13-3 16-93 0-1033 0-61 1-7 14-5 
Winter. 11-24 0-1532 1-36 2-0 12-8 7-21 0-0845 1-17 13 14-5 
Equinox .... 22-79 0-2522 1-11 2-7 13-3 18-40 0-1105 0-60 1-9 15-2 
Summer .... 31-86 0-2267 0-71 3-8 13-8 25-18 0-1150 0-46 1-8 13-7 

From seasonal in- 
equalities—- 

Year. 18-20 0-2081 1-14 0-5 3-3 16-17 0-1044 0-65 0-8 8-5 
Winter. 10-78 0-1544 1-43 0-7 6-1 6-79 0-0812 1-20 0-5 6-9 
Equinox .... 20-81 0-2588 1-24 1-2 6-6 17-87 0-1085 0-61 1-4 15-1 
Summer .... 30-95 0-2417 0-78 1-5 6-1 24-58 0-1198 0-49 1-3 9-9 

appropriate values of a and b were then determined by least squares, and proved to 

be a = 11 12y, b = 0‘1358y. Inserting these values of a and b in the formula, and 

ascribing to S in succession the frequencies of the 11 Januarys, values were deduced 

for Pv,. The observed values of P in January fluctuated from 8'ly in 1899 to 25'8y in 

1892, i.e., they had a range of 17'7y. The sum of the eleven differences between 

observed and calculated values taken irrespective of sign was 23'7y, the mean difference 

2 M 2 
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being thus 237/11 or 2‘2y. This expressed as a percentage of the range is 

237 x 100/11 x 177, or 12'2. 

There is obviously a good deal that is “ accidental ” in the results obtained for 

individual months, especially in V. The values of b/a, it will be seen, are decidedly 

larger for H than for Y, implying that relatively considered the sunspot influence has 

more effect on the range of the former element than on that of the latter. 

The differences between observed and calculated values naturally tend to increase 

in size with the extent of the variation of R during the 11 years, and so are largest in 

summer. The fairest way, however, to compare the accuracy of the formula at 

different seasons, or for different elements, is to take as criterion the percentage which 

the mean difference between observed and calculated values is of the difference between 

the largest and least observed values of R. In H these percentages show no marked 

variation with the season. There are considerably greater variations in Y, but they 

probably represent in the main the smaller accuracy of observed values in that 

element, as the largest and smallest values for individual months both fall in 

summer. 

If we exclude the equinoctial value in Y, the agreement between observed and 

calculated values is decidedly closer for the seasons than for individual months, and in 

the case of H it is still closer, to a marked degree, for the year. 

One’s estimate of the suitability of a formula, while mainly determined by the size 

of the mean difference between observed and calculated values, is partly determined by 

the mode of grouping of the plus and minus signs. For instance, if the plus signs all 

occurred together, there would be reason to suspect a sensible secular change in the 

amplitude of the diurnal inequality, quite apart from sunspot variation. Table 

XXXIY. accordingly records for each year the actual differences between the observed 

Table XXXIY.—Observed less Calculated Ranges in mean Diurnal Inequality 

for the Year. 

Element. 1890. 1891. 1892. 1893. 1894. 1895. 1896. 1897. 1898. 1899. 1900. 

H 
Y 
I 

+ 0- ly 
— 1 ’ 7y 
+ 0' • 05 

+ 0- 6y 
+ 1 ■ 2y 
+ 0' • 05 

+ 0'5y 
0-0y 

+ 0'-08 

— 0 • 3y 
- l-6y 
+ 0'*01 

+ 0 ■ 4y 
+ 0 ’ 4y 

O'-00 

— 0-5y 
0-0y 

-O'-06 

— 0" ly 
+ 1 ■ 0y 
- O'-07 1 

+
 

P
o

o
 

O
 C

O 
o

 
—

 

— 1 • 4y 
+ 1" ly 
- O'-13 

+1" 3y 
0-0y 

+ 0' • 13 

— 0 • 6y 

i * iy 
— 0 - 03 

and calculated values. The calculated values for H and V were derived from the 

values of a and b assigned in Table XXXIII. to the mean diurnal inequality for the 

year. The results for I were calculated from 

a = Cf'8648, b = (COllll, 

these being the values obtained by the aid of least squares from the observed I range, 

m the mean diurnal inequalities for the eleven years. The corresponding value of 
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100b/a, viz., 1‘28, it may be pointed out, is considerably in excess even of that found 

for H, and double that found for V. An analogous result was observed in the case of 

the quiet day ranges. 

The plus and minus signs occur pretty promiscuously in Table XXXIV. Also there 

seems no parallelism between the differences observed in the case of the different 

elements. In short the differences do not suggest anything but accident. Considering 

that the observed H ranges varied from 19'6y to 35'6y, it seems not a little remarkable 

that in seven years out of the eleven, the difference between the observed and 

calculated value did not exceed 0'5y. The mean difference between observed and 

calculated values of I was 0/-059, or 6‘7 per cent, of the range in I during the eleven 

years. The agreement is thus closer than in the case of V, though decidedly less good 

than in the case of H. * 

§ 24. Wole’s formula was also applied to the observed amplitudes of the 24-, 12-, 8- 

and 6-hour terms in the mean diurnal inequality for the whole year, in the case of H 

and V. The results appear in Table XXXV. The agreement between the observed 

and calculated values is in general good, especially in the case of the 24- and 12-hour 

Table XXXV.—Constants in Wolf’s Formula It = a + bS. 

Horizontal force. Vertical force. 

Mean difference Mean difference 
observed~calculated. observed-^- calculated. 

a. b. 100 b/a. 

Absolute 
value. 

As 
percentage 
of range. 

a. b. 100 b/a. 

Absolute 
value. 

As 
percentage 
of range. 

Cl 
y 

6-32 
7 

0-0868 1-37 
7 

0-27 4-1 
7 

5-62 
7 

0-0317 0-56 
7 

0-40 12-1 
C2 3-49 0-0440 1-26 0-21 6-0 3-42 0-0260 0-76 0-15 7-0 
c3 2-04 0-0103 0-51 0-14 10-5 1-32 0-0090 0-68 o-io 10-0 
Ci 1-05 0-0028 0-27 0-04 12-1 0-49 0-0023 0-47 0-05 22-7 

terms in H and the 12-hour term in V. It is least good in the case of the 6-hour 

terms, whose amplitudes even at their largest are very small. The general tendency 

apparently is for b/a to become smaller, i.e., for the sunspot influence to be less marked, 

as the order of the harmonic increases, but the 24-hour term in V seems exceptional. 

The values obtained for a, b, and b/a for ordinary days in the case of H are very 

similar to those obtained from the quiet day ranges, but are on the whole slightly 

larger. In the case of V the differences between ordinary and quiet day results are 

more marked, and the excess in the b/a from ordinary days over that for quiet days 

is larger. 
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Daily Range. 

§ 25. The term daily or diurnal range is used in several senses. It may mean the 

difference R between the algebraically largest and least hourly values in the diurnal 

inequality, that inequality being derived from selected days or from all days. It may 

mean, however, the difference It' between the highest and lowest daily values, 

irrespective of the time at which they occur, whether an exact hour or not. The 

mean It' for a month is simply the arithmetic mean of the values for individual days 

of the month. 

Tables XXXVI. and XXXVII. give It for H and V from ordinary days, for each 

month of the eleven years. Tables XXXVIII. and XXXIX. give It' from all days for 

the same two elements. The It derived from any combination of days must be less 

than the corresponding It', unless the maximum and minimum each occur at a fixed 

time, which is an exact hour. In practice, the times of the maximum and minimum 

vary from day to day. Speaking generally, the difference between It and It' for a 

particular month is larger the more disturbed the month. 

If instead of the month one takes the year, the mean It' is the arithmetic mean of 

the values for the 12 months, but It is less than the arithmetic mean of the monthly 

values unless the hours of maximum and minimum in the inequality are the same 

throughout the year, which is never the case at Kew. Even when one considers the 

months of the same name from a number of years, there is usually some variation in 

the hour of maximum or minimum. To bring out these points, Tables XXXVI. and 

XXXVII. contain the values of II from the inequalities for the whole year and for all 

the months of the same name combined, as well as the arithmetic means of the values 

for the individual months. 

In Table XXXVI., November is the only month in which the R from the months 

combined equals the arithmetic mean of the values for the separate months. In the 

other 11 months the former quantity is the smaller, though the difference is never 

large. There is a much larger difference between the inequality range for the whole 

year and the arithmetic mean of the values of R for the twelve months. The former 

quantity on the average stands to the latter approximately in the ratio 7 • 8. 

In Table XXXVII., April is the only month in which R from all the months 

combined is the same as the arithmetic mean of the values for the individual months, 

but the differences in the other months are small, just as in the case of IT. The 

differences in Table XXXVII. between the inequality range for the year and the 

arithmetic mean of the ranges for the twelve months are a good deal smaller than in 

the case of H. The average excess of the arithmetic means is only about 3|- per cent. 

This implies, of course, less variability in the hours of maximum and minimum. 

Comparing Tables XXXVIII. and XXXIX. with Tables XXXVI. and XXXVII. we 

see that the excess of R/ over R is usually large. Allowance must, of course, be made 

for the fact that the more highly disturbed days—242 for H and 348 for V— 
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contributed to R' but not to R. If they had been excluded in both cases, It7 would 

have been appreciably reduced, more especially in the equinoctial months and in the 

Table XXXYIII.—Horizontal Force. All Days. Absolute Ranges, (Unit ly.) 

Year. 
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Mean. 

1890 35-1 43-1 39-6 46-3 40-3 47-4 50-5 52-6 55-8 54-1 41-8 31-4 44-8 
1891 34-9 47-4 66-8 74-6 75-9 60-0 61-4 69-3 74-3 71-4 50-7 43-0 60-8 
1892 56-2 113-0 114-1 83-9 91-2 83-1 117-3 96-1 70-6 74-6 54-9 53-4 84-0 
1893 55-4 59-1 67-6 77-5 65-3 85-7 83-1 88-5 79-8 71-5 60-4 43-1 69-7 
1894 61-6 98-5 78-3 78-8 82-8 95-0 106-4 95-1 88-6 71-9 74-2 46-2 81-4 
1895 47-4 66-0 75-6 81-3 76-2 82-3 80-5 58-0 62-7 73-3 64-4 46-5 67-9 
1896 63-5 68-2 68-5 74-4 78-7 60-5 68-0 75-7 76-9 58 -1 43-1 38-9 64-5 
1897 40-0 41-8 51-8 77-6 68-9 55-6 53-9 51-2 48-3 50-7 37-8 44-1 51-8 
1898 39-4 49-0 73-1 51-7 64-6 62-3 60-3 61-7 77-0 54-8 40-0 37-8 56-0 
1899 39-3 42-1 50-4 55-9 64-7 60-5 55-0 57-1 59-9 41-7 33-6 35-0 49-6 
1900 39-1 33-4 47-8 41-4 48-6 43-5 40-2 42-6 36-1 34-7 22-7 18-1 37-3 

Mean . 46-5 60-1 66-7 67-6 68-8 66-9 70-6 68-0 66-4 59-7 47-6 39-8 60-7 I 

years 1892, 1894, and 1896 ; while, if they had been included in both cases, It would 

probably have been slightly increased. 

Table XXXIX.—Vertical Force. All Days. Absolute Ranges. (Unit ly.) 

Year. 
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Mean. 

1890 16-6 20-6 26-5 27-2 28-4 26-8 25-8 23-0 21-9 22-0 15-5 3-6 21-5 
1891 15-5 23-9 35-9 42-8 53-7 31-6 35-8 33-5 47-3 32-2 25-5 24-8 33-5 
1892 25-0 65-8 74-9 49-0 68-4 52-2 68-0 48-3 33-0 39-9 28-3 32-8 48-8 
1893 27-0 33-1 34-1 35-3 38-6 44-0 44-7 46-9 39-9 34-6 37-4 24-4 36-7 
1894 28-8 68-6 52-8 45-7 44-9 45-9 65-8 48-7 58-0 29-1 45-8 21-8 46-3 
1895 23-8 38-8 38-9 40-8 44-0 43-3 38-6 30-8 30-7 40-6 32-6 24-0 35-6 
1896 28-8 34-7 44-8 37-8 51'-7 32-4 36-2 37-2 32-7 30-0 22-6 22-3 34-3 
1897 23-5 21-2 28-9 44-1 37-9 29-4 28-0 27-8 23-8 20-7 16-6 19-3 26-8 
1898 17-2 26-1 53-3 30-8 36-4 30-8 29-3 33-0 44-1 27-6 22-9 18-0 30-8 
1899 21-1 25-5 29-2 31-7 33-0 33-2 29-2 24-6 24-3 17-7 14-9 17-4 25-1 
1900 19-0 16-8 27-0 23-4 34-8 26-8 25-8 26-0 19-3 19-7 13-9 12-8 22-1 

Mean 22-4 34-1 40-6 37-1 42-9 36-0 38-8 34*5 34-1 28-6 25-1 20-1 32-9 

2 N VOL. CCXVI.-A. 
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§ 26. Table XL. gives the ratio borne by the mean B/ to the corresponding arithmetic 

mean of the values of It for the 12 months and for the 11 years separately. The 

disturbed days omitted from the V inequalities were the more numerous, so that any 

reduction in It consequent on this exclusion would naturally be greater in V than 

in H. The excess of Pd is, however, invariably much larger for H than for V, 

confirmatory of what has been already said as to the former being in general much 

the more disturbed element. Relatively considered, the excess of R' over R has 

a conspicuous maximum near mid-winter, and a minimum near mid-summer. The 

pre-eminence of the values of R'/R in winter over those in equinoctial months is hardly 

what one would have expected from consideration of disturbances alone. We see that 

the size of the regular diurnal inequality is apt to give in winter a very inadequate 

idea of the average diurnal variation in the field. 

Table XL.—Values of (Absolute Range from All Days)/(Inequality Range 

from Ordinary Days). 
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Mean. 

H 
Y 

2-81 
2-65 

3-25 
2-44 

2-40 
1-73 

1-73 
1-31 

1-72 
1-26 

1-52 
1-18 

1-63 
1-25 

1-67 
1-35 

1-90 
1 -51 

1-97 
1-64 

2-41 
2-10 

2-84 
2-56 

2-13 
1-75 

1890. 1891. 1892. 1893. 1894. 1895. 1896. 1897. 1898. 1899. 1900. Mean. 

H 1-90 1-99 2 ■ 22 1-74 2-09 1-90 2-11 1-88 2-16 1-97 1-67 1-97 
Y 1-37 1-54 2-00 1-49 1-82 1-49 1-55 1-32 1-49 1-38 1-32 1-52 

If we compare the values of R'/R in different years, we see that while on the whole 

it was least in the years of fewest sunspots, it was considerably below average in 

1893, the year of sunspot maximum. In the case of H, in fact, it was lower for 1893 

than for any other year except 1900. This means that in 1893 R was specially large, 

and not that R' was small. As Table XXXYIII. shows, the mean value of R' for 

1893 was 15 per cent, above the average of the 11 years, and was exceeded only in 

1892 and 1894. In the case of V the value of R'/R for 1893, though less remarkable, 

was below-the mean. In both H and V the values of R' for 1892 and 1894 were 

much in excess of that for 1893. For 1892 this excess was 21 per cent, for H, and 

33 per cent, for V. 

Table XLI. shows the order in which the years stand when placed in descending- 

order of range. Data for D are included to make the survey more complete. The 
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resulting order is also shown when the figures from D, H and V are added, and 

finally the order when the sunspot frequency is the criterion. It and It' are treated 

separately. 

When the size of It' is the criterion, the order is the same for all the magnetic 

elements, except that 1890 comes last in V, while 1900 comes last in D and H. 

There is less agreement between the results from the three elements in the case of 

It, but the differences between the pairs of years 1890 and 1900, 1892 and 1894, and 

last 1897 and 1898, are so small that little significance attaches to the precise order 

in which the members of the pair present themselves. In the final returns from the 

Table XLI.—Position of Years when Arranged in Descending Order of It, B/, and S. 

1890. 1891. 1892. 1893. 1894. 1895. 1896. 1897. 1898. 1899. 1900. 

D 9 6 2 1 3 4 5 7 8 10 11 
R H 10 6 3 1 2 4 5 7 8 9 11 

V 11 6 3 2 1 4 5 8 7 9 10 

Mean . . 10 6 3 i 2 4 5 7 8 9 11 

D 10 6 1 3 2 4 5 8 7 9 11 
R' H 10 6 1 3 2 4 5 8 7 9 11 

V 11 6 1 3 2 4 5 8 7 9 10 

Mean . . 10 6 1 3 2 4 5 8 7 9 11 

Sunspots .... 11 6 3 1 2 4 5 8 
7 

9 10 

three elements combined, the only difference between the R and Pd lists is that there 

is an interchange of place between 1892 and 1893, and between 1897 and 1898. 

Table XLII. deals with the twelve months in the same way that Table XLI. dealt 

with the eleven years. In Table XLII. the points of agreement between tjhe different 

elements in the same list, or between the same element in the two lists, are somewhat 

inconspicuous outside the mid-winter months. Successive months sometimes occupy 

very different positions, without there being a very large difference between their 

values of the ranges. A longer period of years would be required to eliminate 

satisfactorily what is accidental. Whether one takes R or E/, it is clear that 

December, January, and November fill the last three places. 

When the three elements are combined, May, July, and August are bracketed 

second in the case of P. In the case of P.' there is a bracket between April and July, 

and again between June and September. 

2 n 2 
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The difference between the positions occupied by June in the B and B/ lists is 

remarkable. In the B list it comes first, slightly in advance of the other three mid¬ 

summer months, whereas in the Pd list no element places it higher than fifth. 

Another striking phenomenon is the difference between the positions assigned to 

March and July in the B' list according as the element considered is D or IT. In the 

case of H, it is true, the mean values of B/ for the six months March to September 

differ comparatively little. Still the fact that (July Bange/March Bange) = 0'88 for 

D, but = 1'06 for H, appears a little remarkable. 

Table XLII.—-Position of Months when Arranged in Descending Order of B and B'. 
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D 11 9 7 2 4 3 5 1 6 8 10 12 
R H 11 10 8 5 4 1 2 3 6 7 9 12 

Y 11 9 6 4 1 3 2 5 7 8 10 12 

Mean . 11 9 7 5 (2) 1 (2) (2) 6 8 10 12 

D 11 8 1 2 3 9 6 5 4 7 10 12 
R' H 11 8 6 4 2 5 1 3 7 9 10 12 

V 11 7 2 4 i 5 3 6 8 9 10 12 

Mean . 11 8 2 (3) i (6) (3) 5 (6) 9 10 12 

§ 27. In the case of the mean diurnal inequality for the year there is, as we have 

seen, a close connection between the range and the corresponding sunspot frequency 

S. This does not necessarily imply any close connection between sunspot frequency 

on any given day and the amplitude of the regular or irregular magnetic changes on the 

same day. It seems increasingly difficult to think of any cause for the magnetic diurnal 

inequality other than electrical currents in the upper atmosphere. In temperate 

latitudes, whether at sunspot maximum or minimum, regular magnetic changes are 

most rapid during the day, but the difference between day and night seems reduced 

at sunspot maximum. Whether by day or by night, the regular changes are larger 

in sunspot maximum than in sunspot minimum. The most natural inference is that 

direct sunlight, whether there are or are not sunspots, increases the conductivity of 

the upper atmosphere, and that the effect persists to some extent during the night. 

At sunspot maximum the upper atmosphere is more conducting than at sunspot 

minimum at the same hour. The state of the upper atmosphere as regards 
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conductivity may be due to contributions from some, perhaps many, previous days. The 

solar influences may be of different kinds, taking different times to travel from the sun 

and decaying at different rates. Sunspots again maybe evidence of some effect on the sun 

which is shared by the solar system, but which takes some time to travel the distance 

separating the earth from the sun. The diurnal inequality can be derived only from 

a combination of days. Thus it does not enable us to compare magnetic conditions 

and sunspot frequency on individual days. There is even a difficulty in comparing 

the run of magnetic conditions and sunspots during successive months, owing to the 

annual variation in the daily range. This difficulty can, however, be fairly sur¬ 

mounted if we express the range for each month as a percentage of the mean range 

from all months of the same name in the 11-year period. The percentage values thus 

obtained for R and R; in H appear in Table XLIII. along with the corresponding 

Wolfeu’s sunspot frequency, the latter in heavy type. 

The general tendency for the percentage figures in Table XLIII. to be large in 

years of many, and small in years of few sunspots, is of course obvious. But when 

we compare successive months, we see that with rise of S we may have rise or fall of 

R, and that R and R' not infrequently change in opposite directions. There being 

132 months, there are 131 passages from one month to the next. If we allow l/2 in 

cases where the value is the same in two consecutive months, we find that R and R' 

changed in the same direction in 84 cases, S and R changed in the same direction in 

65|- cases, while S and R/ changed in the same direction in 7'2\ cases. A large 

monthly value for R' may be due to only two or three highly disturbed days, excluded 

from the ordinary days, still the number of cases in which R and R/ changed in 

opposite direction is larger than would have been expected. The figures quoted above, 

by themselves, afford no evidence of a connection between S and R in individual 

months, and only slight evidence of a connection between S and R'. This differs from 

what was observed in the case of D. There R and S increased or diminished together 

in 75 cases out of 131, while Rr and S increased or diminished together only in 

68 cases. 

In many instances the values of S for consecutive months differ so little that 

accident might play a considerable part. If we confine ourselves to the 52 cases in 

which S changed by at least 10 units, there was agreement in the direction of change 
♦ 

in 30 cases as between R and S, 

,, 28 ,, ,, Rr ,, S, 

,, 34 ,, ,, R „ R. 

This is decidedly more favourable to a connection between R and S in individual 

months. 

In a second investigation the months of each year were arranged in two groups of 

6, consisting respectively of the months of largest and least sunspot frequency. The 
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Table XLIII.—Comparison of Sunspot Frequencies and H Range Percentages. 

Year. 
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S 5-3 06 51 1-6 4-8 1-3 11-6 8-5 17-2 11-2 9-6 7-8 
1890 R 72 80 74 73 64 76 77 79 87 77 79 99 

R' 75 72 59 68 59 71 72 77 84 91 88 79 

S 13-5 22 2 10-4 205 41 1 48-3 58-8 33 2 53-8 51-5 41-9 32-2 
1891 R 79 76 82 91 86 91 102 106 112 125 133 116 

R' 75 79 100 110 110 90 87 102 112 120 107 108 

S 691 75-6 49 9 696 79-6 76-3 76-8 101-4 62-8 70-5 65-4 78-6 
1892 R 157 136 127 116 113 110 134 136 104 137 123 102 

R' 121 188 171 124 133 124 166 141 106 125 115 134 

S 750 73-0 65-7 88-1 84-7 88-2 88-8 129-2 77-9 79-7 751 93-8 
1893 R 108 123 131 130 116 131 132 128 125 134 153 164 

R' 119 98 101 115 95 128 118 130 120 120 127 108 

S 83-2 84-6 52-3 81-6 1012 98-9 106 0 70-3 65-9 75-5 56-6 600 
1894 R 131 134 114 127 145 132 117 129 118 125 119 134 

R' 132 164 117 117 120 142 151 140 133 120 156 116 

S 63-3 67-2 610 76-9 675 71-5 47-8 68-9 57-7 67-9 47-2 70-7 
1895 R 110 124 137 130 113 129 121 92 97 109 123 119 

R' 102 110 113 120 111 123 114 85 94 123 135 117 

S 290 57-4 520 43-8 27-7 490 450 27-2 61-3 28-4 38 0 42-6 
1896 R 116 116 107 114 102 89 92 104 115 84 76 70 

R' 137 114 103 110 114 90 96 111 116 97 90 98 

S 406 29-4 291 310 20 0 11-3 27-6 21-8 48-1 14-3 8-4 33-3 
1897 R 108 95 93 109 102 86 85 82 82 80 63 89 

R' 86 70 78 115 100 83 76 75 73 85 79 111 

S 302 364 38 3 14-5 258 223 90 31-4 34-8 34-4 30-9 12-6 
1898 R 90 66 80 69 90 95 90 85 89 78 90 71 

R' 85 81 110 77 94 93 85 91 116 92 84 95 

S 19-5 92 18 1 142 7-7 20 5 13-5 2-9 8-4 130 7-8 10-5 
1899 R 49 79 71 72 94 87 85 86 100 73 85 ■ 76 

R' 85 70 76 83 94 90 78 84 90 70 71 88 

S 9-4 136 86 16-0 15 2 121 8-3 4-3 8-3 12-9 4-5 0-3 
1900 R 82 72 85 69 75 75 66 75 71 77 57 61 

R' 84 56 72 61 71 65 57 63 54 58 48 46 
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mean values obtained for S and for the percentage values of R and Pd in H for the 

two groups appear in Table XLIV. 

Table XLIV.—Percentage H Ranges from Groups of Months of Larger and Smaller 

Sunspot Frequency. 

Year. 

Group of months of largest sunspot 
frequency. 

Group of months of least sunspot 
frequency. 

S. 
R 

per cent. 
R' 

per cent. 

P 
S. 1 K 

per cent. 
R' 

per cent. 

1890 11-0 83 82 3-1 73 67 
1891 49-2 108 104 22-0 92 96 
1892 81-4 122 148 64-6 127 127 
1893 95-5 133 116 74-4 129 114 
1894 92-6 131 138 63-4 123 130 
1895 70-6 115 113 57-4 119 111 
1896 51-4 106 105 32-2 92 108 
1897 35-3 96 89 17-2 83 83 
1898 34-4 81 96 19-1 84 88 
1899 16-5 73 80 7-7 87 83 
1900 13-2 75 66 5-7 69 57 

Mean . . . 50-1 102-1 103-4 33-3 98-0 96-7 

The higher Pd percentage appears in the group of higher values of S in 9 years out 

of the 11. In the two exceptional years, 1896 and 1899, the deficiency in the value 

of R' in the first group is only 3, and so possesses little significance. On the average 

of the eleven years, the excess of the percentage values of Pd in the first group 

amounts to 6'7. If we regard this as a percentage on 60'7y, the mean value of R 

in H for the eleven years, we get 4'07y as corresponding to a difference of 16'8 in S. 

On a formula of the type Pd = a + b S, this would give 

100 b/a = 0'47. 

In the case of R the higher percentage value is associated with the higher value 

of S in 7 years. In one of the 4 exceptional years, 1899, the deficiency in R is 

substantial, but this possesses less significance than would otherwise be the case from 

the fact that the difference between the values of S for the two groups in that year is 

little over half the average. The excess in the percentage value of R in the group of 

higher values of S, on the average of the 11 years, is 4 1. If we regard this as a 

percentage on 30'7y, the mean value of R in H from the 132 months, we get l'26y 

as corresponding to a difference of 16'8 in S. On a formula of the type R = a + b S, 

this would give 
100 b/a = 0'27. 
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Taking the arithmetic mean of the monthly values of R in H for each year of the 

eleven, and applying the ft = a + b S formula, I found by least squares 

a = 21‘47y, 6 = 0'2224y, 100 6/a = 1'036. 

The division of the year into equal groups of 6 months only partly attains the 

object in view, viz., the elimination of any cause whose effect lasts for several months, 

because there is some tendency for the months of higher S in a year to occur together. 

In 1890, for instance, the 6 months of largest S came from the second half of the 

year, while in 1894 and 1900 the first half of the year contributed 5 out of the 6 months 

in the first group. Taking this into account, and the smallness of the value of b/a 

deduced in the case of R from Table XLIV., the natural inference would seem to be 

that the value of R from ordinary days in a particular month depends less on the 

value of S in that month than on the values of S in the other months of the year. 

This may mean nothing more than that the value of S on a particular day is a very 

rough measure of the solar activity to which enhanced diurnal inequalities are due, 

while the mean value of S from all days of the year affords a very exact measure. 

The fact that the value of b/ct derived from Table XLIV. in the case of R' is so 

much larger than that derived in the case of R, suggests that the solar influence is 

more direct or immediate in the case of irregular than in the case of regular magnetic 

changes. 

Table XLV. shows the result of grouping the 132 months according to the monthly 

mean value of S. Notwithstanding the considerable number of months included in 

the groups, the results of the first grouping in which the step in S is only 10 are 

somewhat irregular. R and IT show a decided tendency throughout to increase with 

Table XLV.—Percentage Ranges from Months Grouped according to Sunspot 

Frequency. 

Range of 
values 
of S. 

Montlis 
in 

group. 

Mean values; 

S. 
R 

per cent. 
R' 

per cent. 

0 to 10 23 6-2 77-8 71-5 
10 „ 20 20 13-8 75-1 77-7 
20 „ 30 14 25-1 93-0 94-6 
30 „ 40 12 33-7 89-5 98-7 
40 „ 50 12 45-4 103-0 106-7 
50 „ 60 8 55-0 111-5 112-9 
60 „ 70 14 65-4 120-2 112-6 
70 „ 80 16 75-2 125-4 129-6 
80 „ 90 7 85-6 128-7 124-1 

>90 6 105-1 137-0 132-0 

Range of 
values 
of S. 

Months 
in 

group. 

Mean values. 

S. 
R 

per cent. 
R' 

per cent. 

0 to 20 43 9-6 76-6 74-4 
20 „ 40 26 29-1 91-4 96-5 
40 „ 60 20 49-3 106-4 109-2 
60 „ 80 30 70-6 123-0 121-7 

>80 13 94-6 132-5 127-8 
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S, but in the group or groups with S above 80 the rate of increase seems reduced. 

The exceptionally high monthly values of S occurred sporadically. For instance, the 

extreme value, 129'2 in August 1893, was preceded by 88'8 in July and followed by 

77'9 in September. Thus we should not expect a correspondingly high value of It 

uidess the influence of previous months is negligible. 

In considering the significance of Table XLV. allowance should be made for the fact 

* that some of the groups come entirely from years of sunspot maximum. No value of 

S as high as 60 occurred in the sunspot minimum or intermediate years. Again, 

sunspot minimum years gave no value of S larger than 20‘5, and so their contributions 

were practically confined to the groups 0 to 10 and 10 to 20. Intermediate years 

contributed only two months to the group 0 to 10, and six to the group 10 to 20. 

§ 28. We have hitherto considered only mean monthly values of It', but the way in 

which these values are made up seems also of interest. To make the results more 

complete, D has been included in the investigation. Some data for D were got out 

in a previous paper,# but they are considerably extended here. As a preliminary it 

is well to know something about the extreme values of R/. To this end Tables XLYI. 

and XLVII. give the smallest recorded values of R' in D and H for each month. 

Table XLVI.—Declination. Absolute Daily Ranges. Smallest Values. 

Year. 

Ja
n

u
ar

y
. 

F
eb

ru
ar

y
. 

M
ar

ch
. 

A
p
ri

l.
 

M
ay

. 

Ju
n

e.
 

Ju
ly

. 

C/3 
3 

b£> 

<D 
o 

2 
<D 

■+3 

cs 
CD 

m O
ct

o
b
er

. 

N
o
v
em

b
er

. 

D
ec

em
be

r.
 

Year. 

1890 4-2 

r 

5-6 5-1 

/ 

8-2 

/ 

6-2 

/ 

6-9 

/ 

8-0 

/ 

8-2 5-0 5 • 7 

/ 

5-0 

/ 

3-8 

/ 

3-8 
1891 31 4-1 4-3 8-1 8'5 7-9 8-6 9-2 9-8 7-9 7-1 4-7 3-1 
1892 5-7 8-3 11-4 10-9 10-3 9-2 11-4 10-1 9-2 8-5 3-7 5-7 3-7 
1893 5-0 5-0 8-0 12-5 11-9 12-3 11-6 11-5 10-1 9-3 5-9 4-1 4-1 
1894 6-8 7-9 8-3 9-6 10-6 10-5 6-8 9-7 10-3 9-0 4-7 4-6 4-6 
1895 3-9 6-8 8-3 11-9 10-0 13-0 10-8 8-0 8-5 8-6 5-2 3-8 3-8 
1896 6-0 7-3 8-0 10-9 9-0 6-7 7-9 9-8 8-2 6-6 3-4 2-7 2-7 
1897 3-2 4-3 8-9 8-3 7-4 7-8 8-0 9-1 6-1 5-8 4-3 9 • 9 —l Ju 2-2 
1898 3-1 3-5 6-0 8-0 7-1 7-7 7-2 8-0 7-5 6-5 4-3 3-3 3-1 
1899 3-0 3-8 6-3 7-9 7-1 8-4 6-4 8-2 7-7 4'2 3-0 2-4 2-4 
1900 3-2 3-1 5-3 7-2 5-7 7-8 8-0 6-5 5-6 5-1 2 * 2 2-5 2-2 

Whole 1 

period. J 

3-0 3-1 4-3 7-2 5-7 6-7 .6-4 6-5 5-0 4’2 9 • 9 
-J £J 2 • 2 2 * 2 

Corresponding data are not given for V owing to their greater uncertainty. V 

ranges are on the average less than D or H ranges, and when very small they are 

VOL. CCXVI.-A. 
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exposed to undue uncertainty owing to the large temperature coefficient of the 

magnet and the absence of a temperature correction. The uncorrected temperature 

effect on R/ is of course not always in one direction, but amongst the least ranges of 

the month the chances are that some will be reduced by the temperature effect. Thus 

the natural consequence of the absence of a temperature correction will be to give too 

low a value for the monthly minimum range. The H ranges are not wholly free 

from this uncertainty, but the temperature coefficient of the H magnet is only about 

a seventh of that of the V magnet, while the average range in H is fully 80 per cent, 

in excess of that in V, thus the uncertainty is of quite a different order. 

Table XLVII.—Horizontal Force. Absolute Daily Ranges. 

Smallest Values (Unit ly). 

Year. 

Ja
n

u
ar

y
. 

F
eb

ru
ar

y
. 

M
ar

ch
. 

A
p
ri

l.
 

>> 

Ju
n
e.

 

13 

+3 
co 
3 
'op 

< S
ep

te
m

b
er

. 

O
ct

o
b
er

. 

N
o

v
em

b
er

. 

D
ec

em
b
er

. 

Year. 

1890 16 18 17 31 25 < 26 31 24 23 25 16 13 13 
1891 12 17 18 38 28 35 39 41 40 29 29 13 12 
1892 26 36 37 30 41 44 46 45 36 38 19 17 17 
1893 20 20 31 52 40 45 42 50 38 36 30 19 19 
1894 21 30 25 36 46 60 50 49 31 36 22 19 19 
1895 16 29 34 50 45 52 44 27 33 30 21 16 16 
1896 24 29 23 43 35 35 29 33 48 23 15 12 12' 
1897 13 15 24 34 36 33 31 28 27 21 18 12 12 
1898 10 13 29 16 23 33 28 25 33 23 18 11 10 
1899 11 16 22 30 31 27 22 32 37 16 13 9 9 
1900 12 12 21 25 26 29 23 22 22 14 11 7 7 

Whole 1 
period J 

10 12 17 16 23 26 22 22 22 14 11 7 i 

The D range is entirely free from this source of uncertainty, so far as is known ; it 

has the further advantage that no error can arise from an unrecognised variation in 

the scale value. There is, however, one slight drawback attending it, viz., that the 

force required to alter D by 1' alters if H alters. Strictly speaking, the force 

equivalent to a change of 1' in D is different at different times of a highly disturbed 

day. 

The slight increase in accuracy that would result from allowing for changes in H 

in the course of a single day would be no adequate return for the labour involved. 

Apart from any disturbance effect, the force equivalent to a change of U in D is 

influenced by secular change in H. The mean value of H in 1900 exceeded that in 
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1890 by 259y, or about 

alter D by 1/ was 

1'4 per cent. If we go to 3 figures, the force required to 

5'29y in 1890 and 1891 

5’30y „ 1892 

5'31y „ 1893 and 1894 

5\32y „ 1895 

5'33y „ 1896 

5-34y „ 1897 and 1898 

5’35y „ 1899 

5’36y „ 1900. 

This variation, though quite appreciable when we are dealing with large ranges, is 

hardly worth considering in the case of the minimum ranges in Table XLVI. 

Examining that table we see that the winter months, especially December, are 

conspicuous for small ranges. The fact that the mean values of II' for winter months 

fall conspicuously short of those for other seasons is due, not so much to the absence 

of large values of R/, as to the presence of a considerable number of very small values. 

In summer, really small ranges are scarce. In fact, in the half year from April to 

September no single day of the 11 years had a range under 5'. In 1893 no April 

day had a range under 12/-5, though the mean value for the month was only 17'T, 

and in June the lowest range was 12/-3 though the mean for the month was only 

16/'4. The uniformity of the range in June 1893 was very remarkable. In 21 of the 

30 days the range lay between 14/-0 and 18r‘5 and the highest value of the month 

was only 21/-6. The absolutely smallest range of the 11 years was 2,-2, or 12y in 

force. 

Turning to Table XLVII., we see that the lowest range recorded was 7y. The 

winter months, as with D, supply all the outstandingly small ranges, December being 

especially conspicuous. 

During the eleven years the sensitiveness of the Ivew H nragnetograpli was always 

near 1 mm. = 5y. Thus a range of 7y implies a variation of only 1'4 mm. in the 

length of the ordinate throughout a portion of curve whose length of abscissa is 

360 mm. This means a slope so gentle everywhere that the recognition of the 

positions of the maximum and minimum is no easy matter. Again, a change of 1°F. 

in temperature would alter the ordinate fully 0’3 mm. Thus not improbably 7y may 

have been somewhat an under-estimate of the true minimum range. 

At the other end of the scale the largest observed ranges were 

in D, 1° 25'T ( = 457y) on March 15, 1898 ; 

in H, 720y on February 13, 1892 ; 

in V, 639y on July 20, 1894. 

It is possible that the D range on March 15, 1898, may have been exceeded on 

2 o 2 
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February 14, 1892, as the trace then went beyond the limit of registration, and the 

range measured to the edge of the sheet was 1° 19'. Ii we accept the value on 

March 15, 1898, as the true maximum, we find maximum range/minimum range 

= 102'9 in H, as compared with 3 9’4 in D. 

§ 29. Tables XLVIII. to LIII. deal with the frequency of occurrence of ranges 

of different size for D, H, and V. There are two tables for each element, the one 

showing the distribution for each of the 11 years, the other the distribution for each 

of the 12 months. To make the D results comparable with those for the force 

Table XLVIII.—Declination Ranges (Unit ly). Number of Occurrences. 

Year. 
From 0 
To 12-5 

12-5 
25 

25 
37-5 

37-5 
50 

50 
62-5 

62-5 
75 

75 
100 

100 
125 

125 
150 

150 
175 

175 
200 

200 
250 

250 
500 

500 

1890 0 4 55 96 96 68 30 11 4 1 0 0 0 o ; 
1891 0 13 27 35 78 75 80 37 8 5 4 2 1 0 
1892 0 1 9 28 49 70 115 39 18 12 9 8 8 0 
1893 0 3 13 26 33 61 156 47 15 8 2 0 1 0 
1894 0 2 10 36 41 92 107 36 15 4 7 3 12 0 
1895 0 6 18 27 49 70 112 41 19 16 7 0 0 0 
1896 0 8 26 36 65 82 75 36 18 11 3 5 1 0 
1897 1 15 37 57 93 74 45 31 6 2 1 1 2 0 
1898 0 17 39 52 102 66 52 22 8 2 9 

jj 0 3 0 
1899 0 26 38 70 93 64 50 12 3 5 2 9 0 0 
1900 1 49 49 96 102 45 14 3 3 3 0 0 0 0 

elements, the same force limits are employed for the several classes. It was not 

necessary to convert individual D ranges into their equivalents in force, but only to 

find what were the angles corresponding to the several force limits, employing the 

relation between 1' and ly appropriate to the particular year. 

Table XLIX.—Declination Ranges (Unit ly). Number of Occurrences in 

Eleven Years. 

Month. F rom 0 
To 12-5 

12-5 
25 

25 
37 • 5 

37-5 
50 to

 o
 

o<
 62-5 

75 
75 

100 
100 
125 

125 
150 

January. . . 0 38 67 74 51 30 37 23 10 
February . . 0 21 43 52 44 42 54 26 9 
March. . . . 0 1 11 39 71 68 67 36 24 
April .... 0 0 0 25 74 85 90 32 12 
May. 0 0 6 40 61 82 97 29 14 
June .... 0 0 ' ' 2 35 88 89 84 23 9 

July. 0 0 2 32 96 97 80 19 3 
August . . . 0 0 1 19 86 93 110 24 4 
September . 0 0 8 36 81 70 87 23 11 
October. . . 0 1 21 69 66 43 68 45 13 
November . 1 30 64 • 70 50 40 32 16 8 
December. . 

1 
1 53 96 68 33 28 30 19 7 

6 
7 

14 
5 
4 
4 
4 
2 
3 
8 

10 
9 

175 2001250 
200 250 500 

0 3 
2 I 3 

0 0 
7 
7 
6 
1 

1 
5 
6 
1 
2 
0 
3 
2 
3 
0 
2 

3 

500 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 i 
0 
0 
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Table L.—-Horizontal Force Ranges (Unit ly). Number of Occurrences. 

Year. 
From 0 
To 12-5 

12-5 
25 

25 
37-5 

37-5 
50 

50 
62-5 

62-5 
75 

75 
100 

100 
125 

125 
150 

150 
175 

175 
200 

200 
250 

250 
500 

500 

1890 0 40 99 111 66 28 14 5 2 0 0 0 0 0 
1891 1 23 49 68 82 52 59 14 ii 3 1- 1 1 0 
1892 0 4 33 66 61 60 68 29 16 4 3 9 10 3 
1893 0 10 32 50 8-1 68 78 25 13 5 0 3 0 0 
1894 0 8 44 38 59 71 79 32 12 5 4 2 9 2 
1895 0 9 38 57 77 66 68 30 10 8 2 0 0 0 
1896 2 26 42 68 72 51 60 26 11 3 3 0 2 0 
1897 1 34 69 99 78 39 27 9 6 2 1 0 0 0 
1898 3 46 58 80 67 46 41 17 2 i 1 1 0 9 

1899 4 45 83 79 69 37 33 9 5 i 0 0 0 0 
1900 15 73 117 106 32 11 7 1 1 i 0 1 0 0 

Table LI.—Horizontal Force Ranges (Unit ly). Number of Occurrences in 

Eleven Years. 

Month. Xo°m 
0 

12-5 
12 • 5 
25 

25 
37-5 

37-5 
50 

50 
62-5 

62-5 
75 

75 
100 

100 
125 

125 
150 

150 
175 

175 
200 

200 
250 

250 
500 

500 

January . . 5 73 97 58 32 32 22 12 7 0 1 1 1 0 
February . . 1 45 73 48 49 30 30 14 11 1 2 1 3 2 : 

March ... 0 12 71 71 68 32 38 21 15 2 2 3 5 i 
April .... 0 2 29 73 64 66 62 19 4 6 2 2 1 0 
May .... 0 1 36 64 80 64 60 18 6 4 2 2 4 0 
June .... 0 0 29 75 78 58 55 14 13 4 i 2 1 0 
July .... 0 2 38 69 78 49 61 24 9 3 i 3 3 1 
August . . . 0 5 23 77 94 56 53 21 4 3 i 2 0 2 
September . 0 5 32 76 79 52 55 16 7 3 i 0 3 1 
October. . . 0 15 61 79 46 48 66 21 1 2 2 0 0 0 
November . 3 67 78 78 47 18 17 9 9 3 0 0 1 0 
December . 17 91 97 54 29 24 15 8 3 2 0 1 0 0 

Table LII.—-Vertical Force Ranges (Unit ly). Number of Occurrences. 

Month. 
From 0 
To 12-5 

12-5 
25 

25 
37-5 

37-5 
50 

50 
62-5 

62-5 
75 

75 
100 

100 
125 

125 
150 

150 
175 

175 
200 

200 
250 

250 
500 

500 

1890 71 164 111 13 5 1 0 0 0 0 0 0 0 0 
1891 26 110 143 39 22 7 7 5 4 1 0 0 1 0 
1892 13 96 126 58 17 12 15 8 3 3 2 o 

D 9 1 
1893 6 106 126 75 23 9 13 3 1 1 i 1 0 0 
1894 15 96 134 52 26 12 10 3 9 1 9 o 

O 7 9 

1895 13 101 136 53 31 12 13 5 l 0 0 0 0 0 
1896 18 127 127 40 21 10 13 7 i 0 l 1 0 0 
1897 51 144 119 26 13 2 7 0 2 1 0 0 0 0 
1898 37 132 133 40 13 3 3 1 0 0 0 0 9 

j-i 1 
1899 45 170 108 27 5 3 6 0 1 0 0 0 0 0 
1900 61 199 94 6 3 0 0 0 0 1 0 0 1 0 
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Table LIII.—Vertical Force Ranges (Unit ly). Number of Occurrences 

in Eleven Years. 

Month. 
From 0 
To 12-5 

12-5 
25 

25 
37-5 

37-5 
50 

50 
62-5 

62-5 
75 

75 
100 

100 
125 

125 
150 

150 
175 

175 
200 

200 
250 

250 
500 

500 

January. . . 76 173 58 14 11 4 4 0 0 1 0 0 0 0 
February . . 42 133 74 23 14 5 ‘ 8 4 0 0 2 1 3 1 
March. . . . 5 124 118 37 22 6 14 6 0 3 0 0 5 1 
April .... 1 74 163 51 15 5 14 3 2 1 0 0 1 0 
May. 0 43 171 67 33 10 5 2 2 2 1 9 3 0 
June .... 0 76 169 48 14 12 5 2 1 0 1 i 1 0 
J uly. 0 86 166 48 14 10 8 2 1 0 1 3 1 1 
August . . . 9 £J 111 158 46 11 1 5 2 1 1 0 1 1 1 
September . 9 139 108 37 14 5 9 3 3 0 0 0 3 0 
October. . , 22 168 91 25 17 8 5 4 1 0 0 0 0 0 
November . 74 176 38 19 5 3 7 4 2 0 1 0 1 0 
December . 125 142 43 14 9 2 3 0 2 0 0 0 1 0 

The step for the six lowest classes is only 12‘5y, answering roughly to 2r'5 in D, or 

half the step employed in the corresponding tables in my previous paper. For the 

next five classes the step is 25y. The twelfth class has a step of 50y, the thirteenth 

of 250y, while the last class includes the few ranges—-none in D—which exceeded 

500y. It requires a large number of classes to show the distribution satisfactorily 

near the lower end of the scale. Towards the upper end of the scale, the occurrences 

are so few that the employment of a very large number of classes with small steps 

would have been a useless complication. It would, in fact, require a very much 

longer period of years to fix the exact law of incidence for ranges exceeding 200y. 

To facilitate intercomparison, Table LIV. includes results for the whole year from the 

three elements. The 11 years, the four years representing sunspot maximum, and the 

three years representing sunspot minimum are treated separately. Table LIAh 

likewise gives results from the three elements for the three seasons, derived from the 

whole 11 years. 

The results in Table LIV. are shown graphically in fig. 13. The number of days 

in each class was expressed as a percentage of the total number of days included in 

all the classes, and ordinates were drawn proportional to these percentages, due 

allowance being made for the difference between the steps in the earlier and later 

classes. The graphical representation was not carried beyond the 9th class, whose 

superior limit is 150y, because the ordinates for the higher classes would have been 

too short to show satisfactorily, and the irregularities arising from insufficient length 

of period would have been too great. In all the curves the range of greatest 

frequency of occurrence is less than the arithmetic mean range. Also the range of 

most frequent occurrence is always greater for I) than for H, and much larger for 

H than for V. On many days when the D and H curves show large irregular 
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Seasons. Year. 

Z5~r 50 y 7jy 100~v 1Z5~Y 150~y Z5y 3 (TV 73 V woy 72oy 150V 

Fig. 13. Absolute daily ranges, frequency of occurrence. 
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oscillations, the V curve shows practically no trace of disturbance, or merely a slight 

exaggeration of the afternoon maximum. At times, however, V exhibits disturbances 

rivalling those in D and H. If we confine ourselves to days when the range 

exceeded 250y, there were 24 occurrences in Y as compared with 28 in D, and on 

4 occasions the V range exceeded 500y, while the largest D range observed was 

457y. .During some of these very large disturbances the V trace—which has usually 

a gently rounded contour—-showed large rapid oscillations just like the D and H 

traces. 

The great majority of the largest storms occurred in 1892 or 1894. In the group 

of years of sunspot minimum a range as high as 250y appeared only once in V, and 

on no single occasion in D or H. 

There is a certain resemblance between the frequency curves for winter and for the 

sunspot minimum year, between those for equinox and for the average year, and 

again between those for summer and for the sunspot maximum year. The curves for 

the sunspot maximum year show a less smooth rise to the maximum ordinate than 

the others. 

§ 30. Fig. 14 presents the range distribution data from a different point of view. 

Unit abscissa represents the arithmetic mean range for the element and season con¬ 

sidered. Thus, in the case of the year from the 11 years, it represents 72‘2y in D, 

60‘7y in H, and 32‘9y in V. This eliminates the effect of mere size, and so helps to 

bring out the degree of resemblance between the laws of distribution followed in 

different elements, or in the same element at different seasons. In the case of the 
* 

whole year, the range of greatest frequency occurs very nearly at the same place— 

i.e., bears very nearly the same ratio to the mean range—in the H and V curves ; 

in D it answers to a decidedly larger abscissa. 

In the case of H, the range of greatest frequency answers to a higher and higher 

fraction of the mean range as we pass from winter to equinox, and from equinox to 

summer. There is not much difference between the curves in fig. 14 answering to 

sunspot maximum and minimum, though the mean ranges are respectively 75'8y and 

43 *9y. 

All the frequency curves have the general aspect of the ordinary diagram of 

intensity of visible and invisible radiation from a solid at high temperature. This, 

however, may mean no more than that the number of classes in which the ranges 

were grouped was too limited to show the existence of bands of reduced frequency or 

of no frequency. The existence of such bands, at least towards the side of the very 

high ranges, is by no means improbable, especially if storms should prove to have 

more than one origin. 

For the careful measurement of the curves and the calculation of the hourly means 

I am indebted to various members, past and present, of the Kew Observatory staff. 

Amongst these I would particularly mention Messrs. G. Badderly and C. Cooper, 

2 p VOL. CCXVI.-A. 
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now of the National Physical Laboratory, and Mr. B. Francis, the present magnetic 

observer at Kew Observatory. During the eleven years whose records are mainly 

considered the magnetographs were under the charge of Mr. T. W. Baker, then 

Chief Assistant, who also took the great majority of the absolute observations. The 

homogeneousness of the material owes much to Mr. Baker. The expense of 

measuring the curves was defrayed mainly out of grants from the Government Grant 

Committee. The calculation of the diurnal inequalities, Fourier coefficients, and 

other arithmetical work has been mainly done in my leisure hours. 
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§ 1. Introduction. 

The kinetic theory of gases can be developed accurately only after the distribution of 

the molecular velocities lias been determined. This was done by Maxwell* in the 

case of a uniform gas, and by means of his well-known law of distribution the pressure 

and temperature can be precisely expressed in terms of the molecular data. His law 

does not suffice, however, for the investigation of diffusion, viscosity, or thermal 

conduction, since these occur only when the gas is not uniform in composition, medn 

velocity, or energy. An accurate theory of these phenomena must be based on the 

evaluation of the modified velocity-distribution function, a task which for many 

decades has constituted one of the classical unsolved problems of the kinetic theory. 

* Maxwell, ‘Scientific Papers,’ I., p. 377, II., p. 23. The proofs were unsatisfactory, and have been 

improved by Boltzmann, Jeans, and others. 
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In one special case, as Maxwell found, the actual determination of this function 

proves to be unnecessary for the purpose mentioned ; this is the case of a gas composed 

of molecules which are point centres of force varying inversely as the fifth power of 

the distance. The reasons for the peculiarity in this instance are analytical and not 

physical, and unfortunately for the simplicity of the mathematical theory of gases, 

Maxwell’s results* for such a gas do not accord with the observed data of actual 

gases. This particular molecular model is therefore interesting chiefly on theoretical 

grounds, and it is important to develop the theory for molecules of other types, 

which may better represent the behaviour of real molecules. . 

Until recently no progress had been made towards the determination of the velocity- 

distribution function for a non-uniform gas, beyond a theorem by Boltzmann,!' who 

proved that the function must satisfy a certain integral equation. In 1911, EnskogJ 

applied the method of solution by series to this equation ; he determined the form of 

the function, but without evaluating its coefficients, and his numerical approximations 

proved far from satisfactory. In 1912, Hilbert § showed that if the molecules of the 

gas are rigid elastic spheres, Boltzmann’s equation may be transformed into a linear 

orthogonal integral equation of the second kind with a symmetrical kernel, and 

deduced the existence of a unique solution. Lunn|| and Pidduck’F have since removed 

Hilbert’s' restriction to a special type of molecule, and by means of the transformed 

equation Pidduck has worked out a numerical solution of a special problem on 

diffusion. These researches are of much importance and interest, especially from the 

logical standpoint of the pure mathematician. The use of Boltzmann’s equation, 

howevever, does not appear to be the best method of actually determining the formal 

solution; thus Pidduck states that the symmetrical kernel of the transformed 

equation shows no special properties in the case of Maxwellian molecules, and in the 

numerical solution it appears to be necessary to repeat all the calculations, which are 

very laborious, in every special case which is worked out. 

In 1911, by the assumption of a simple form for the velocity-distribution function, 

I endeavoured to extend Maxwell’s accurate theory of a gas to molecules of the most 

general kind compatible with spherical symmetry.** Subsequent acquaintance with 

Enskog’s work convinced me of the approximate nature of my results, and during the 

last few years I have given much thought to the determination of the general velocity- 

distribution function. By a method which is quite distinct from that based on 

* Maxwell, ‘ Scientific Papers,’ II., p. 23. Molecules which are point centres of force varying 

inversely as the fifth power of the distance will, for the sake of brevity, be referred to as Maxwellian 

molecules. 

t Boltzmann, ‘ Vorlesungen iiber Gastheorie,’ I., p. 114. 

J Enskog, ‘ Physikalische Zeitschrift,’ XII., 58, 1911. 

§ Hilbert, ‘Math. Annalen,’ 1912, or ‘ Linearen Integralgleichungen ’ (Teubner), 1912. 

|| Lunn, ‘Bull. Amer. Math. Soc.,’ 19, p. 455, 1913. 

11 Pidduck, ‘ Proc. Lond. Math. Soc.,’ (2), 15, p. 89, 1915 ; cf. p. 95 for the statement quoted. 

** Chapman, ‘Phil. Trans.,’ A, vol. 211, p, 433, 1911, 
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Boltzmann’s equation, viz., by the use of the aggregate of the equations of transfer 

for certain infinite sequences of functions of the molecular velocities, an expression for 

the velocity-distribution function similar to that found by Enskog can be obtained, 

and general formulae for the coefficients can be determined. The present paper contains 

the solution for a gas in which the mean velocity and the temperature vary from 

point to point, the results being worked out at all completely only for the case of a 

simple gas ; in a later paper I hope to give the solution in the most general terms, 

so as to yield a complete theory of viscosity, thermal conduction, and diffusion in a 

composite gas formed of two kinds of spherically symmetrical molecules of any type. 

The formulae obtained by the present method lend themselves to numerical calcula¬ 

tion, and are found to converge rapidly. The results for any particular molecular 

model can be calculated to any desired degree of accuracy ; in this paper three special 

types of molecule have been considered, viz., point centres of force varying inversely 

as the nth power of the distance, rigid elastic spheres, and rigid elastic attracting 

spheres. It is found that, for such molecules, the errors in the approximate formulae 

for viscosity and thermal conduction which were given in my first paper do not exceed 

two or three per cent, at most. The detailed numerical results, and comparison with 

observed data, are given in §§ 10-12. 

§ 2. Definition and Preliminary Consideration of the Problem. 

The Nature of the Gas. 

§ 2 (A). The gas contemplated in our calculations is monatomic and nearly perfect, 

“ monatomic ” implying nothing more than spherical symmetry of the molecules, 

while “ nearly perfect” denotes a certain state as regards density and temperature ; 

this state is such that the molecular paths are sensibly rectilinear for the majority 

of the time, being altered by mutual encounters, the duration of which is a very 

small fraction of the average interval between two encounters. In these circum¬ 

stances the number and effect of encounters in which more than two molecules are 

simultaneously engaged is negligible in comparison with the number and eflect 

of binary encounters. 

The gas is supposed to be acted upon by external forces, and the variations of these 

forces, and of the density, mean velocity, and temperature of the gas, with regard 

to space and time, are small quantities of the first order at most. In the present 

paper the density of the gas is • supposed such that the mean length of path of 

a molecule between collisions is small compared with the scale of the space-variation 

of the above quantities ; the modifications of the theory in the case of highly rarefied 

gases, where the mean free path becomes large, will be dealt with in a future 

paper. As we are not interested in the mass motion or acceleration of the gas 

as a whole, but only in the small variations with regard to space and time, it is 

convenient to imagine that, by the addition of a suitable uniform motion and field 

2 Q 2 
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of force to the whole gas, the mean velocity and acceleration at the particular point 

and time under consideration are reduced to zero, the velocity and acceleration at 

other points throughout the gas being small, though not actually zero. 

Notation. 

§ 2 (B) We shall denote the mass of a molecule by m, the number of molecules per 

unit volume at the point (x, y, z) by v, the components of external force acting on a 

molecule at (x, y, z) by (X, Y, Z), the components of the velocity of a typical molecule 

by (u, v, w), and the components of the mean velocity of the gas at the point (x, y, z) 

by (u0, v0, w0). The vector difference between the velocity of a typical molecule and 

the mean velocity (u0, v0, w0) will be called the peculiar velocity of the molecule; we 

shall denote its components by (U, V, W), so that 

(l) U = u—u0, V = v—v0, W = w—w0. 

The Distribution of Velocities. 

§ 2 (C) The distribution of the molecular velocities may be specified by (u0, v0, iv0) 

together with a function f(U, V, W), called the velocity-distribution function, 

which is defined by the following property: the number of molecules contained 

within a volume-element dx cly dz about the point (x, y, z) which possess peculiar 

velocities whose three components lie respectively between (U, V, W) and (U+dU, 

V + dV, W + dW) is 

(2) vf(U, V, W) dl) d\l d\N dx dy dz. 

Besides being a function of U, V, W, f will depend on the mass m, the absolute 

temperature T and its space derivatives at the point (x, y, z), and on the space 

derivatives of (u0, v0, w0), but not on the absolute magnitudes of the latter: for we 

may evidently impart an arbitrary additional velocity (u', v', w'), to the whole mass 

of gas without affecting the distribution of the peculiar velocities of the molecules 

at any point. It is therefore legitimate, and it will prove convenient, to suppose 

that, at the actual point under consideration, u0 — v0 = w0 — 0 ; where u0, v0, w0 

occur in any expression which has to be differentiated, however, they must not be 

made equal to zero till after the differentiation lias been performed. 

In consequence of the definition of f and of U, V, W, f must satisfy the following 

equations :— 

(3) /(U, V, \N)dl}dMd\N = 1, 

(I) U/(U. V, \N)d\JdWd\N = Jjj V/(U, V, W) dl) dW d\N 

W/ (U, V, W) d\J dy dW = 0. 
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If Q denotes any function of the velocity components (u, v, w) of a typical molecule, 

while Q denotes its mean value at the point (x, y, z), we have 

(5) Q = jjj Q/(U, V, \N)d\JdVd\N, 

in which, for purposes of integration, Q would be expressed in terms of w„+U, % + V, 

w0+ W by (2). In the integrals (3) to (5), and elsewhere throughout the paper, 

integrations with respect to the velocity components are understood to be taken 

oyer all values of the variables, from — go to + oo. 

The equations (4) may, in the notation just introduced, be expressed as follows :— 

(6) D = V = W = 0. 

The Velocity-distribution Function for a Uniform Gas. 

§ 2 (D) When the gas is uniform, all the derivatives of T and of (u0, v0, w0) are zero, 

and f must depend only on m, T, and (U, V, W). It has, in fact, been shown by 

Maxwell and others* that 

(7) 
where 

f = 
hmf'1 

IT 

—lim (u2+V2+W2) 
5 

(8) 
2 h 

= RT, 

and R is the universal gas constant in the characteristic equation of a gas: 

(9) p = Ri/T. 

The Distribution Function for a Non-uniform Gas. 

§ 2 (E) When the gas is slightly non-uniform, f will differ slightly from the value 

given by (7), which we shall denote by f : we may therefore write 

(10) /(U, V, W) =/0(U, V, W){1 + F(U, V, W)} = ^y'VAm(u2+v2+w2){l + F(U, V, W)}. 

The function F will be of the same order of magnitude as the variations of 

temperature and velocity in the gas ; these space derivatives we shall regard as being 

of the first order, and as we shall neglect second order quantities throughout our 

work, no products of derivatives will occur in F. Hence, since F vanishes when the 

variations in the gas are zero, it must be a linear function of the space derivatives 

of T and (wo, v0, w0), with no term independent of these derivatives. The coefficients 

will be functions of m, T, and U, V, W. 

Clearly the form of F cannot depend upon any special choice of axes of reference 

(these are throughout taken to be mutually perpendicular), so that F is an invariant 

* Cf. Jeans’ ‘Dynamical Theory of Gases.’ 
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with respect to any orthogonal transformation of the co-ordinate axes. This places 

some restriction upon the possible modes of occurrence in F of (U, V, W) and of the 

space derivatives of T and (u0, v0, w0), though not, of course, on the scalar quantities 

m and T. It is easy to see that the most general invariant function of the quantities 

involved in F must be compounded of the following elementary invariants :— 

(11) C2 = u2+v2+w2, 

(12), (13) 

(14) 

a _ du0 dv0 dw0 

' “ dx dy dz ’ 
V2T = (— + — + 

“ v3«2 dy2 

DT = (U^+V^ + w|-)T, 
dx dy dz! 

(15) S' = Ua^+V!^+W=®y» 
ox dy dz 

vw{^ + |s')+wu(|fe+3m 
oy dz / \ dz dx 

dVn dm. 
°'+uv(p + bp,, 

ox dy) 

together with derivatives of the last four expressions formed by operating on them 

any number of times by the invariant differential operators V2 and D, in the notation 

of (13) and (14). 

[,January 15, 1916.—Except in the case of highly rarefied gases, which were 

expressly excluded in § 2 (A), only the derivatives of the first order actually occur in 

F, to -the present degree of accuracy. The reasons for this will perhaps be more 

clearly apparent after reading §11, but the following considerations will elucidate the 

point. Whatever derivatives are contained in F must (§11) appear either in the 

equation of pressure or the equation of energy, so that, if the ordinary equations of 

viscosity and thermal conduction are to hold good, only the first-order space deriva¬ 

tives of temperature and mean velocity can be present; otherwise the ordinary 

coefficients of viscosity and conduction do not exist. In actual gases at normal 

densities the ordinary equations are shown by experiment to be valid; they fail, 

however, in highly rarefied gases because the terms in F which contain second-order 

differentials of T, u0, v0, w0 are in this case comparable with those containing derivatives 

of the first order, as will be seen in detail in the future paper mentioned in § 2 (A). 

The coefficients of the first and second order derivatives respectively contain (\/l) and 

(A/02, where A is the mean free path of a molecule and l is comparable with the scale 

of length within which the temperature and mean velocity vary appreciably ; except 

in rarefied gases {\/lf can be neglected in comparison with (A/l). The same inferences 

can be made also (cf. § 6) from the equations of transfer of § 3. 

For the present paper it is therefore sufficient (and it is convenient) to write down 

the following form of F forthwith :—- 

F = (u U + VU + W U) P, (C2) + SP,(C2) + S'P3(C2), (16) 
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this being the only way in which the first-order derivatives can occur in F, in order 

that F may be an invariant. 

Here P^C2), P2(C2), P3(C2) denote certain undetermined functions of U, V, in 

which these variables appear only in the form U3 + V3+W2 or C2. The first term of F 

is evidently of odd degree in U, V, W combined, and the second and third are of even 

degree; it is convenient to denote them by 0(U, V, W) and E(U, V, W), when we 

wish to refer to the odd or even part of F separately.] 

It is easy to see that, in a uniform gas, f, satisfies the necessary conditions (3), (4). 

In the non-uniform case these conditions require F to satisfy the equations 

(17) /0F dll dV dW = 0, 

(18) ||| U/0F dll dV dW = 111 V/0F dU dV dW = J j W/„F dU dV dW 

Clearly the odd part 0(U, V, W) of F satisfies (17), and the even part E(U, V, W) 

satisfies (18), but not vice versa, so that these equations place certain restrictions on 

0 and E. 

3. The Equation of Transfer of Molecular Properties. 

§ 3 (A) The rate of change of rQ, the aggregate value of Q (u, v, w) per unit volume, 

may be analysed into three parts, viz., that due to molecular encounters (which we 

denote by AQ), that due to the passage of molecules in or out of the volume-element 

considered, and that due to the action of the external forces. The equation 

expressing this analysis may readily be shown* to be 

(19) |(,Q) = AQ- 2 
x,y, z 

A(mQ)-^X(5y 
ox m \ du 

We may define AQ by the statement that (AQ)dxdydzdt is the change produced 

by molecular encounters during time dt in the sum AQ taken over all the molecules 

in the volume-element dx dy dz : evidently AQ = rQ dx dy dz. 

If in (19) we make Q equal to unity, in which case AQ is clearly zero, the equation 

becomes 

dv _ fdvll0 dvV0 

dt \ dx ' dy dz J 

(du0 dv0 8w0\ 

\dx dy dz) dx 

dv 
+ V) ^ t wo 

dy 

which is the equation of continuity. 

* Cf. Jeans’ ‘ Dynamical Theory of Gases.’ 
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Except under the differential sign we shall write u = U, v = V, w — W, since we are 

supposing that u0 = v0 = w0 = 0 at the point (x, y, z). The last equation consequently 

reduces to 

(20) 
1 _ _ /0?L ffin 

v dt \0a; 0y dz J 

In taking mean values of functions of U, V, W, as in (5), we shall neglect the part 

F in the velocity-distribution function f in cases where the mean value is to be 

differentiated or multiplied by a small factor, since the resulting error is only of the 

second order.# Thus, in such cases, we shall write 

(21) U2C* = 1C2(S+1), UtC2(s-1) = iC2(s+1), V2W2C2 (s-1) _ l_Q2(s + l) 
TT7 

(22) C2s = 1.3.5... (2s+l)(2hm)-, 

while, if either p, q or r is odd, 

(23) UFVWV7 = 0. 

Since the equation of transfer involves derivatives of the first order only, it is 

sufficient, whenever the mean value of a function of u, v, w is to be differentiated, to 

expand it by Taylor’s theorem in terms of u0, v0, w0, so far as the first degree only; 

if, then, the coefficient of u0, v0, w0 is of type (23), the corresponding term may he 

omitted altogether. 

Case I. Q = u (u2 + v2 + iv2)s. 

§3 (B) When Q = u(u2+v2 + w2)s, according to the principles just laid down we 

have 

4- {mQ) = v (\j2C2s + 2uuUC2s + 2sU2 (m(JU + rqV + w0W) C2(s-1)+ ...) 
ox ox 

~30a>c } 
_ 1.3.5... (2s + 3) 0 ( 1 

0a: \2 hm 

s+l 

. 1 . 3 . 5 ... (2s + 3) / 1 V /_J_ 0 

2hm) 12hm dx +1 0a: \2hm) +Sv dx \2hm)j ’ 
m 

0 , -w. 0 
(^Q) = 0, — (vwQ) = o, 

* Except in gases of very low density. 
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neglecting in each case quantities of the second order. Since Q is of the first order, 

to the same degree of accuracy as in the above equations, we have 

^ (rQ) = 0. 

Again, writing u = U, v — V, w = W after differentiation, we have 

|Q) = C“ + 2sU,Cs,'-u = i (2s+ 3) C“ = L3-5---(2s + 3) / 1 
duJ 3 \2hm 

Here we have omitted UVC2(s_1) and UWC2(i_1), since when multiplied by X, which 

is of the first order, the result is of the second order, and hence negligible. 

Similarly 

= 0. 

The equation of transfer consequently takes the form 

(24) AUC2s 
1 . 3 . 5 ... (2.9 + 3) / 1 V f 1 

3 2 hm) 1.2 hm 
dv 9/1 \_Lv + 9/1 \\ 
dx V dx\2hm! m SV dx\2lim)\ 

When s = 0, this becomes 

AU 
2hm dx dx \2hmj m 

Now mAU is the rate of change of momentum per unit volume due to the 

molecular encounters, and, since action and re-action are equal and opposite, this 

change is zero. Hence we have, remembering that (2h)~x — ItT = p/v, 

(25) 

which is one of the equations of pressure of the gas. 

On substituting the value of X given by (25) into (24), the latter may be written 

(26) 
(2hm)'+1 3 A 0o, 1 9T 

1 .3.5... (2s + 3) s v T dx 

where we have used the equation (cf. 8) 

9 / 1 
2 hm 

dx \2hm 

1_ 9T 

T dx ' 

There are two equations similar to (26) giving AVC2s and AWC2s in terms of dT/dy 

and 9T/9z. 

2 E VOL. CCXVI.— A. 
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Case II Q = u2 (u2+v2+iv2)s. 

§ 3 (C) Making approximations and reductions as in Case I., we have 

!M, - !(«“, - |.(jj-)'" 

dk (^Q) = dh „ {U3C2s + 3w0U2C2* + 2sU3 (u0U + r„V + ?t?0W) C2(s-:) + ...} 
/d Of* /d Of* dx ' " ax 

d d- m0 (C2(s+1)+ gsC2(s+1)) = _ 1.3.5... (2s+5) f 1 V 

ca; 

SS+1 0^n 

2hm dx ’ 

3 3 
dd (vVQ) = dd v {U2VC2s+ c0U2C2s + 2sU2V (?/,0U + u„V + ?r„W) C2(s_1)+ ...} 
c# oy 

3 
= f vVo(iC-^+AsC»^1>)*= 

cy 

1.3.5... (2.s + 5) ; / 1 V+1 0Up 

15 ^ 2/wn 3?/’ 

02 
(k?rQ) - 

1 . 3 . 5 ... (2g+5) / 1 V+1 3^o 

15 \2 hm) 02 

[p) = 2UC2*+2sU3C2(s~1) 
\3 u! 

'3Q 
°> 1 >1= °’ 

oQ' 

CJ = °- 

The equation of transfer may therefore he written 

(27) ALTO" = l:.3--A:-.(^f.3_) „ MV+I 
15 \2hm) L U dt 

[13 1 3T 
5r^ + (Ul)^ 

T dt 

+ (2s + 5) ( 3 + ~~ + 
ox oy oz 

When s = 0, this becomes 

AU2 = 
2 hm 

1^ t ^ rp r\ ~ 

_£di 131 . o du0 , dv o Qjg„ 

> 3c T 3c 8x ‘ 3y 02. 

If to this be added two similar equations giving AV2 and AW2, on the left-hand 

side we have A (U2 + V2 + W2), which is the rate of change of molecular energy due to 

encounters ; by the principle of conservation of energy this is zero, so that 

or, by (20), 

(28) 

o,l 3, 1 3T 
dt + T dt 

/3mo , 3r„ 

dx oy 
+ 5 + 

OWy 

~~5 cz 
= 0, 

1 8T _ 2 (du0 dv0 ' dw0\ _ 2 1 dv _ _2 1 dp 

T dt 3 \ 3a; dy 3z I ^ v dt 3 p dt 
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On integration this gives Tp~"<3 - constant, or, since p = BET, it is equivalent to 

= constant; this is the law of adiabatic expansion for a gas which possesses only 

translational energy. 

Eliminating - Q- and ^ ^ from (27) by means of (20) and (28), we have 

(29) AU2C2s = 

v at T at 

1 . 8 . 5 ... (2s + 3) ( 1 V+1 

15 2 h m 

cun . dv„ . dw,. 
+ (2* + 5)(3p + ^ + 

ox cy c>z 

. 1 • 3 . 5 ... (2s+5) 9 /_1 V+1 ' ~ 

or 

(30) 

45 \2hm/ 

(2 hm)s+1 45 

o crou 9fu dw0 
"N 'N / 5 

ox cy cz 

^ ^ 

I .8.5... (2.v-j-5) 2i J =2-"-- ox cy oz 

By transformation of axes, or otherwise, we may deduce the equation 

(31) 
■ '"N '"N 

- cr,, . oiv, 
-- — A2VWC-S = 3 (+ 
1 . 3.5 ... (2s + 5) 2v ■ \cz di 

§ 4. The Effect of Molecular Encounters. 

§ 4 (A) In this paper our primary concern is with simple gases containing molecules 

of one kind only ; the difficulties are much enhanced when molecules of two kinds are 

present, especially as regards the equations of transfer, and the final determination 

of the coefficients of F when AQ has been calculated. These matters will be dealt 

with in a future paper, on diffusion and the general theory of composite gases. In 

the calculation of AQ, however, there is scarcely any advantage in making the 

restriction to one kind of molecule only, and it is convenient to carry out the 

calculation for a composite gas in order that the results may be quoted without 

repetition in the later, more general, investigation. 

The notation of § 2 may be adapted to the case of a composite gas without further 

change than the addition of suffixes 1, 2 to denote to which group of molecules 

a sjunbol such as v, to, U, V, W, f, F refers. The mean velocity of the two groups 

will be supposed the same, so that (u0, v0, w0) is the same for both, either 

separately or together ; similarly, their temperature or mean energy, and their 

relative densities (pjv-?) are supposed constant. All the remarks made concerning 

f and F hold both for J\ and Fl5 and f2 and F2, these being functions respectively 

of (Ul5 Vj, W[) and (U2, V2, W2); they may each now be expected to involve vx: v2 

and mx: m2 in addition to the quantities mentioned in § 2. A further important 

consideration which did not arise there is that J\ and f2, or Fx and F2 are similar, 
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in the sense that either may be obtained from the other by interchanging the 

suffixes 1, 2. 

Notation for an Encounter. 

§ 4 (B) Before proceeding to the actual consideration of the dynamics of an encounter 

between two molecules m]5 m2, it is convenient to explain the notation to be used. 

The symbols m0, /xl5 /jl2, /x12, and /u21 are defined as follows:— 

m0 = m1 + m2, 

//j mjm0, yW-2 

m 12 = i>hjtn2 — /hi — nijm^ = thl/h, 

Ul +fJ-2 — lj + U-2 = 1— 

V-12U-21 ” 1 • 

Velocities will be represented either by their x, y, z components or in vector 

notation. The components of the actual velocities of the molecules will be written 

(U, V, W), while those of other velocities, such as the velocity of the mass-centre G, 

or the relative velocity, will be written (X, Y, Z). The amplitude of a velocity will 

be denoted by C, and the vector itself by the same symbol in small type with a bar 

beneath, viz., c. 

The velocities of the molecules ml5 m2, and of G will be distinguished by the 

respective suffixes 1, 2, 0, while the suffix R, similarly, will indicate reference to the 

molecular velocities relative to G or to one another. As regards time, square brackets 

enclosing a symbol, such as [X„], [cj. will indicate reference to some particular 

(arbitrary) instant during the encounter; a symbol without brackets but with an 

accent (') will refer to any instant after the encounter,# while when there is neither 

bracket nor accent it will refer to any instant before the encounter. 

(32) 

(33) 

(34) 

so that 

(35) 

(36) 

Analysis of the Motions in an Encounter. 

§ 4 (C) In the above notation the initial and final molecular velocities are respec¬ 

tively Cj, Co and c\, c'2, or (if, V3 W,), (U2, V2, W2) and (U'u V\, W'i), (Ub, Vb, W'2); also 

(37) C2=U2 + V2+W2, 

* That is, any instant after the molecules have separated beyond the distance (which in actual gases 

is, at most, very small) at which their inter-action is appreciable; the words “ before the encounter ” are 

to be interpreted in a similar sense. In this sense the velocities of the molecules before and after the 

encounter are definite and constant. 
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where C, U, V, W all have the same suffix 1 or 2, with or without an accent ('). 

Similarly, the mass-centre G has the velocity c0 or (X„, Y0, Z0), and since (by the 

principle of conservation of momentum) this remains invariable throughout the 

encounter,# we have 

(38) c0 = = [J-iQ'i + ^2 = Mi [ti] + M2[f2]? 

or 

Co — $'o = [Co]* 

Since, by (38), 

(39) ml {[c,]-[c0]} = -m2 {[ca]-[c0]} = \[c^-[_c^} = m0 (miM2)’/2 [ck], 

where [cR] is defined by the equation 

(40) [Ch] = (miM2)'4 {[Ci]-[C2]}? 

we see that the momentum of the molecules, relative to G, is equal in magnitude but 

opposite in direction in the two cases, its value being ±m0 (miM2)1/2 [Cr]- The relative 

velocity of the two molecules is, by (40), equal to (m]M2)~V~ [Ck] ; this varies throughout 

the encounter, owing to the inter-action of the molecules ; its initial and final values 

are given by 

(41) Cr = (miMs) {Qi g)? Ck = (miMs) "(Ci Q 2)5 

which are special cases of (40). 

Equations (38), (41), and the reciprocal equations 

(42) Cl = C0 + ^21 l-CR C2 = cu Mi2,2Cj{, 

(43) c\ = c0+^2xkc' u c'2 = c0— 

indicate that c, c2 or c\, c'2 are equivalent to c0, cR or c0, c\{, as specifications of the 

initial or final velocities of the molecules. Hence the problem of determining the 

final velocities of two molecules after an encounter, in terms of the initial velocities 

and whatever further independent variables are necessary to define the encounter, is 

equivalent to the determination of c'R in terms of cR and the variables of the 

encounter. Thus, in consequence of the invariability of c0, the velocity of the mass- 

centre, we need only consider the motion relative to G, i.e., the motion referred to 

uniformly moving axes with G as origin. 

* We here suppose that the effect of the external forces during the brief interval of encounter is 

negligible; this is legitimate if the gas is “ nearly perfect ” {cf. § 2). 
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The Motion Relative to the Mass-centre. 

§ 4 (D) Relative to these axes the molecules are initially moving along parallel lines 

with equal and opposite momenta ±m0 (uiP^'Cr, by (39). The plane containing these 

two lines is clearly the plane in which the inter-action and motion of the molecules 

will take place during the encounter. It is parallel to cR, but its orientation e about 

this direction is independent of* c0, cR, i.e., it is one of the additional variables needed 

to specify the encounter, and, similarly, so also is the perpendicular distancep between 

the initial lines of relative motion. It is convenient to measure e from the plane 

containing c0 and cR. 

In the plane of relative motion so defined, the molecules describe orbits which are 

similar to one another (the origin C4 being the centre of similitude), and symmetrical 

about the line of apses (i.e., points of closest approach). Each orbit has two 

asymptotes, one being the initial, the other the final line of motion ; the distance 

between the pair of final asymptotes is clearly equal to that, p, between the initial 

asymptotes. The angle y]2 between the two asymptotes of either orbit measures the 

deflection of the relative motion due to the encounter; for molecules of given types 

it is a function of p and CR# only, the nature of the function depending on the law of 

inter-act-ion between a molecule mx and a molecule m2. We shall find it convenient, 

for the sake of generality as well as of brevity, to retain y12 as an unspecified function 

of p and CR in our equations ; the special properties of the molecules under 

consideration are, throughout our work, involved only through the dependence of 

Xi2 on p and CR. 

It is easy to see that the magnitude of the relative velocity (nin^-Qn is unaltered 

by the encounter, i.e., 

(44) CK = C'R : 

for by the equation of energy we have 

(45) \ (mA’+mA2) = i(m1C?+m2CV) = (C02 + CR2) = £w0(C02+C'K2) 

by (42) and (43). 

The Velocities in Spherical Polar Co-ordinates. 

§ 4 (E) The above analysis of a molecular encounter may be made clearer by the 

following figure, in which x, y, z, c0, cR, c'H are the points in which a unit sphere 

* That is, on p and on the amplitude CR of the vector cK. 
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centred at O is cut by radii parallel respectively to the co-ordinate axes and to c0, rR, 

and c'R. Then we have 

(45a) e = C0CRC R, X12 = CROc r. 

y 

It is convenient also to use certain spherical polar co-ordinates, as follows, taking 

Ox, 0xy as initial line and plane for cR and c'R, and OcR, 0cRx, or Oc'R, 0c'Rx for c0. 

Thus we write 

(46) dR = cROx, 6 R = c ROx, d0 = c0OcR, 6 0 = c0Oc K, A = c0Ox, 

(47) <p K = cRxy, <p'R = c'Rxy, ^ = c0cRx, <p'0 = c0c'Rx. 

Evidently we have 

(48) cos 6f0 = cos 60 cos X]2+ sin 90 sin x13 cos e, 

(49) cos 6'r = cos 0R cos xis+ sin 0n sin xia cos e + 

(50) cos A = cos 80 cos @R + sin 0V sin 0R cos <p0, 

— cos 6'u cos 6'R + sin 0'o sin 6'n cos <j>'0. 

Expressions for the Velocities After an Encounter. 

§ 4 (F) We have thus indicated how the final molecular velocities c\, c'2 are to be 

determined (cf 43) in terms of the initial velocities ca, c2 or c0, cR together withp and e 

(these being the eight independent variables of an encounter). This has been done 

by showing how c'R depends upon cR, p and e; it has in fact been shown that the 

spherical polar co-ordinates of c'r, referred to cR and the plane c0, cR as initial line and 

plane, are CR, X12 (a function of p and CR) and e. Hence we may at once write down 
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the expressions for the initial and final velocities and velocity components in terms 

of Co, cE, p and <?, as follows :— 

(51) miCj2 = 012 (cos 0O), m2C22 = 021 (cos 0O), MiC'i2 = 012(cos 0'o), m2OV = 02i (cos 0'0), 

(52) 
j m/' Ui = jU-i'-Gq COS A + (u21/’Cj; cos 0E, 

= lUil2C0 cos A + m21/2Ce cos 0'e, 

M2 U2 — m2 '"C'u COS A — Mi /2Ce COS 0e, 

m2'/lU'2 = nf-Co cos A—mi' -Cj. cos 0'R, 

where we have adopted the convenient notation* defined by 

(53) 
f 0i2 (cos 6) = miC02+m2Ce- + 2 (miM2)1/’CuCh cos 0, 

[021 (cos 9) EE m2Qj2+miCe2—2 (mim2) ^C0Ce cos 6. 

Equations (51) to (53) are merely particular cases of (42), (43), expressed in terms 

of amplitudes (51, 53) and of ^-components (52). The latter might also have been 

written in terms of the components of C0 and CJ{, as, for example, 

(54) \J\ = Xo + m^Xr = X,, + m2i,/2 {XR cos Xi2 + (Yr2 + Zr2)V2 sin Xi2 cos (e + 0„)}, 

by (49), writing (X3, Y0, Z0), (XR, YJ{, ZR), (XrR, YE, ZR), for the components of cU5 cR c'R. 

Equations similar to (53), (54) may easily be written down also for the y and 2 

components of the velocities. 

The Dependence of U^, V'j, W\ on Xi2- 

§ 4 (G) From (51) and (54) it is clear that any function Q, (U'i, \l\, W'i) of U\, W' 

is a function of Ui, V,, W,, U2, V2, W2, p and e, or of U1} V;, W]5 U2, V2, W2, Xl2 and e, 

since p is involved only through Xl2 (though Xl2 is not entirely independent of the 

preceding six variables, since it depends upon CR). If Qi (U'i, \l\, W'i) be regarded as 

a function of Xl2, when Xl2 is made equal to zero it reduces to Qi (lh, Vi, Wi) simply: 

this may be seen either from (5l)-(54) or, still more readily, from the figure on p. 293, 

since when Xl2 = 0, c'R becomes identical with cE, and lienee by (42), (43), so also does 

cT with fi. 

Transformation of Co-ordinates. 

§4 (H) In §5 we require the Jacobian of transformation 

j a (lG, fu w\, 
a(Ui, v„ Wi, u2, v.o, w3) 

between the initial and final velocity components, p and e being constant. Since the 

motion during an encounter is reversible, the relation between the two sets of velocity 

* In § 7, for the sake of brevity, we shall write 0i2, 02i, 0'i2> ©^i respectively for 0]2 (cos 0O)> ©21 (cos $o)> 

9i2 (cos 6'0), and 02i (cos 8'0). 
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components is reciprocal, so that J = + I. It may readily be seen that tire positive sign 

is the correct one, by considering a particular case of variation, say dlh = dU2 = dU, 

d\/1 = dV2 — d\J, dWi = dW2 = dW. This is equivalent to the addition of a small 

velocity (dU, dV, dw) to the whole system ; obviously this will reappear in the final 

velocities, so that also dufi = d\j'2 — dU, dM\ =.dw'a = dV, dWfi = dWb = dW. In 

this case, and therefore always, we have J = 1, so that 

(55) dUh dV'i dW\ dU'2 dVb dWh = dlh dVi dWi dU2 dV2 dW2. 

With a little more trouble this might also be proved analytically from the equations 

of this section. 

From the component equations corresponding to (42), (43), i.e., from 

(56) 

(57) 

U i — X0 + fx2j 2 x K) Vi = Yo + ^Y E, Wl — Z0 + /X31 ZR, 

U2 = Xn-M^Xp, Vo = Y0-Mi21/2Ye, Wo = Z0-/xi21/2Zr, Ml2 AB> 

C02 = x02 +y02+z 
2 

0 ? b'jf — xr2 + yr* + zr2, 

it is easy to prove that 

(58) 
3 (Ui, Vt, W1; U2, V8, W8) 
0 (X0, Y0, Z0, XR, Yr, Zr) 

Hence, by further transformation to polar co-ordinates, we have 

(59) riUj dVl dWj dU2 dV2 dW2 = - (miM2)"3/2 dX0 dY0 dZ0 dXR dYR dZR 

= — (miM2)_i/2 C02Ck2 dC0 dCR d cos @0 d cos @R d<£0 d^R. 

Since dUidVidWidll2dV2dW2 is essentially positive, the negative sign on the right 

of (59) must be made positive, if the limits of C, cos 9, and <p in each case are taken 

as 0 to + oo, — ] to +1, and 0 to 2?r respectively; it may readily be seen that the 

negative sign corresponds to reversed limits of integration of one of the variables cos 9. 

§ 5. The General Expression for AQj. 

Definition of AnQi and A12Qj. 

§ 5 (A) The rate of change of ^Qx due to molecular encounters, i.e., AQi, may be 

divided into the two parts AuQl5 A12Qx due respectively to the encounters of the 

molecules nix among themselves, and those with molecules m2. Thus 

(60) AQi = AnQi + Aj2Qi. 

We shall chiefly consider A13Q1} whence AUQX may be obtained by changing the suffix 

2 into 1 throughout. 

YOL. ccxyi.—a. 2 s 
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The Expression for A]2Qx. 

§ 5 (B) The number of molecules m1 having velocity components lying between the 

limits (Ui, V,, Wj) and (if + dUi, Vx + dV1} Wx + dW,) is, by our definition of f (Ui, Vi, Wj), 

equal to 

vifi(Ux, Vi, W,) dUxdVx dWi 

per unit volume. The number of encounters in time dt of any one of these, with a 

molecule m2 having velocity components lying between the limits (U2, V2, W2) and 

(U2 + dU2, V2 + dV2, W2 + dW2), the variables p, e of the encounter lying between p and 

p + dp, e and e + de, is equal to the number of such molecules m2 contained within a 

small cylinder of length (mi/^)-'^^ dt and of sectional area p dp de, i.e., to 

v2 (M1M2) ^ f2 (U2, V2, W2) Orp dp de d/ij2 d\/2 dW2 dt. 

Thus the total number of encounters of the above type, per unit volume per unit 

time, is 

(61) (Ux, Vx, WX)/2(U2, V2, W2) CRpdpdedU, dV: dWx dU2dV2dW2.' 

At each such encounter the change in the value of Qi(Lh, Vl5 Wx) is clearly 

(62) Qx (U'x, V'x, W'j)-Qj (Ux, Vx, Wx), 

or Q7! — Qi, as we shall write it for brevity. 

We shall include the effect of all possible encounters per unit volume per unit time 

if we integrate the product of (6l) and (62) over all values of e (0 to r), p (0 to 00) 

and (U1} Vx, Wj), (U2, V2, W2) (each from — co to + co). Such an integration will 

include encounters which are not binary, but our postulate that the gas is nearly 

perfect (§ 2) implies that our integral would be altered only inappreciably if the 

upper limit of integration for p were not infinity but equal to the very small distance 

at which two molecules cease to exercise any appreciable inter-action. Hence, 

throughout this paper, where no limits of integration are specified, it is to be under¬ 

stood that they have the above values. Thus we have 

(63) A12Qx = viva (mim2)~1/2 j|j 111 | |(Q/i-Qi)/i/2CrP dp de dUi dVi d\Ni dU2dV2 dW2. 

The term/x/2 in the integrand may be written 

(64) v„ w,) + F2 (U„ V2, W2)} 

= Mfff (1 + F, + Fa), 

where, in the first line, we have neglected FxF2, which is a second-order quantity, 

while in the second line we have made use of (45). 
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The unit term in (l+Fi + F2) may be omitted. 

§ 5 (C) It is easy to show that the part of (63) which arises from the unit term of 

(1 + Fi + F2) in (64) is zero. For it may be written in the form 

where 

(pi>iv2/ui/u2 (AwIq/t )3 C Rp dp de, 

0 = ffffffiQi (U'i, V'i, W'O-QiiUj, V1; Wi)} e-^^+W dUld\Jld\Nld\J2dV2d\N2 
J J J J J J 

Now by (45) and (55) the latter is equal to 

(65) [jjjjjQl (U'l5 V\, W\) e~h(m^‘+^ dU\ dvh dW\ d\j'2 dv'2dW'2 

| [Qi (Ui, Vi, Wi) e-h(mC'2+'M dlh dVi dWi d(J2 dM2 dW2. 

But the latter two integrals are equal, since they are definite integrals differing only 

in the symbols used to denote the variables. Hence (65) is zero, and the unit term 

in (1 +Fi + F2) may be omitted from A12Qi. 

The same result can be seen also in another way : the part of A12Qi under 

consideration is that obtained by putting Fx = F2 = 0 in fif2, i.e., it is equal to the 

value of A13Qi in a uniform gas. In a uniform gas, however, as we may see from the 

general equation of transfer (19), AnQi = AJ2Qi = 0, whence the result follows at 

once. 

If Q(U, V, W) is of odd degree, the even part of F (U, V, W) contributes 

nothing to A12Q, and vice versa. 

§5 (D) We may now, therefore, write A12Qi. in the following form, transforming 

the variables (lb, Vl5 WL), (U2, V2, W2) to (X0, Y0, Z0), (xR, Yr, Zb), by (56), (58). 

(66) A12Qi = 

e ftm«(co‘2+ch>(F1 + F2) CRp dp de d U t d V i hWi d U 2 d V2 d, W2 

= Dr2(miMi) 1/2 
\ 7T 

{Q\ — Qi)e~hvl°(c°2+ck2) (Fi + F2) CRp dp dedX0dY0dZ0dXRdYRdZR. 

We here suppose the functions Q (U, V, W) and F (u, V, W) expressed in terms of the 

new variables and (in the case of Qb) of e and X12 (or p)- are concerned both as 

regards Q and F only with terms which are integral in the variables U, V, W ; in 

reckoning their degree we shall make no distinction between Ui and U2, &c., or 

2 s 2 



298 DE. S. CHAPMAN ON THE LAW OF DISTRIBUTION OF MOLECULAR VELOCITIES, 

between X0 and XR,# &o. Then since the equations of transformation (56) are linear, 

any term UfVimWi"U/V/W/ in Q1(F1 + F2) transforms into the sum of a number of 

terms X0aY06Z0cX/YReZ/ such that 

l+p = a + d, m+q — b + e, n + r = c+J. 

This is not true in the case of Q\ (Fi + F2), since (by 54-) iffi, V'i, Wfi are not rational 

functions of the variables X, Y, Z, but it is true of (Fi + F2) JQ'X de, since the integration 

with respect to e causes all the irrational terms in Qfi to disappear.! This may be 

proved quite generally, but it will be sufficient here to indicate the proof for the case 

Qi — UiCh! s being any positive integer. We may write 

where 
Q\ = UhCW = (X + aCR sin 0R cos e + 0o) (C2 + 2aC0CR sin 0O cos e)s, 

& = /Di sin Xl2, X = Xq + M21 ^dCR COS Xl2, 

C2 = C02 + M21CR2+2/x2!/a (X0XR + Y0Ye + Z0Zr) COS Xl2, 

so that X is of the first degree in X0 or XR, and C2 is of even degree in the variables 

(X0, XR), (Y0, Yr), (Z0, Zh). The only terms in Q\ which do not vanish on integration 

with respect to e are of the form 

X {sC2p (C2)s 2p (2aC0CR sin 60 cos e)2p} 
or 

(C0CR2 sin 90 sin 0R cos2p+1 e cos e + <p0) {2a2sC2p+1 (C2)5-^-1 (2aC0CR sin 0o)2p}. 

Now we have 

(C„CR sin e,,)2 = C02CR2 (1—cos2 e0) = {C02cr2-(x0xr+y0yr+z„zr)2}, 

which is an even function of X, Y, Z, and can be included under the symbol C2. 

Thus, on integration with respect to e, the above expressions become (apart from 

a factor not involving X, Y, Z explicitly) 
& 

XC"S, (C0CR2 sin 60 sin 0K cos </>0) C2(s_1) 

and by (50) the latter may be written 

C0CR2(cos X —cos 60 COS 0r) C2(s_1> [X0Cr2-Xr (X0Xr +Y0Yr+ Z,Zr)] C2(*W 

Both these expressions, and consequently JQi (ifii, V\, W\) de as a whole, are of the 

form XC2s in the sense above defined. Similarly it may be shown that jllVCW de is 

even in all three variables (X0, XR), (Y0, Yr), (Z0, Zr).- 

* So that, for instance, x02, x0xB and xR2 will all be regarded as even functions of x. 

f The explicit occurrence of x, y, z in J Q'j ch is here referred to ; the latter may involve CR irrationally 

through xi2- * 
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In the integrand of (66), the exponential term and CE (whether occurring as an 

explicit factor or implicitly in xi2) are even functions of X, Y, Z. Hence a term such 

as X0aY0iZ0cXRfl!YEeZI/ in KQfi — Qi) (F]. + F2) de will contribute nothing to A12Qi unless 

a, b, c, d, e, f and d fortiori a + d, b + e, c+f are all separately even. In view of 

what has been proved above, therefore, it appears that in Q (U, V, W) F (U, V, W) 

only the terms which are even in U, V, W separately contribute anything to A12Qi. 

Hence if Q is odd in U, only the part of F which is likewise odd in U need be 

considered, while if it is even in U, only the even part of F need be considered. 

Introduction of F (xis)- 

§ 5 (E) We now make the final transformation of A12Qi by adopting polar co-ordi¬ 

nates in place of (X0, Y0, Z0), (XR, YI{, ZE), as follows :— 

(67) A,a = va(^)-,fi(^Jjjje-*~<w+c-ni.(x.2)-r(0)}C!o2C*f7EdCo(7CE, 

where 

(68) Ii(xis) = 11 I [Qi(U,1,V,1,W,1) {F^Uj, V1? W,) + F2 (U2, V2, W2)} dedcos60dcosO^dfodfa, 

(69) 1,(0)= Qi (Ul5 Vi, W1){Fa(U1,V1,W1) + F2(U2,V2,W2)}'dedcos0odcos0Ed0o^E- 

Evidently (cf § 4 (G)) the latter is obtained when X12 is made zero in F (xi2), since X12 

is not concerned in the integrations of (68), (69), being a function of p and CR only, 

while when Xi2 =0 we have Q, (Uh, V'i, W'i) = Qi (Ui, Vi, Wi). Flence, in calculating 

A12Qi we shall concern ourselves only with F (xJ2) until we come to the integration 

with respect to p, CE, C0. In so doing we shall, from the outset, omit from F (U, V, W) 

those parts which, in accordance with § 5 (D), contribute nothing to the final result. 

§6. The Form of the Function F(U, V, W). 

The two special forms of Qx which we consider are U/Cj25 and U1C12s; the only 

parts of F(U, V, W) which are relevant in these cases are respectively the part of 

E1 + E2, which is even in V and W2, and Oj + 02; the notation here used is that of 

§ 2 (E), p. 283. From (26) and (30) we see that AUjC/5 involves the space derivatives 

1 ST 
of mean properties of the gas only in the form — —, while AlQCi25 similarly involves 

F O tXs 

only 2 ~ ^ We deduce from this that O (U, V, W) must certainly include 
cx oy cz 

the term 
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and that E(U, V, W) must similarly include the term 

(71) (cHU2 + c22V2 + c33W2 + c23VW + caWV + c12UV) P (C2), 

where 

(72) < 

Cn 

c 22 

C33 

= 2 

= 2 

= 2 

0MO ova 

0a: 

0^0 dwt) 

dz 

dlV0 du0 

dz dx 

dw0 
dz C23 — 2 1 

(dv0 0wo\ 

\dz ' dy ! 

du0 

dx ’ 
C3i = 3 

(div,, du0\ 
\dx dz) 

dv0 

ay’ 
Cj2 = 3 i /0Wo 

ydy dx)' 

The factor of P (C2) in (71) is equal to 3S' — C2S, by (12) and (15), and is therefore 

an invariant with respect to an orthogonal transformation of axes. 

Further since, by (26) and (30), no other derivatives of T and (u0, vn, w0) occur in 

AUjCj24 or AUf'C, 2s, we conclude that none such appear in F (U, V, W)—at any rate, 

to our degree of approximation ; thus the other terms in (12)—(15), while they 

possess the invariant property, do not satisfy the other conditions which must be 

fulfilled by F (U, V, W). 

We therefore conclude that F(U, V, W) is composed only of (70) and (7l) to our 

order of accuracy, and we shall suppose that the two functions P (C2) are expansible 

as power series in C2. Throughout this paper we shall assume that all convergency 

conditions necessary for the validity of our analysis are satisfied ; the justification 

of this assumption would offer serious difficulty, and the investigation would lead 

us into regions of pure mathematics which are largely unexplored, and would be 

unsuitable in the present paper. In § 10 we shall see that numerical approximations 

for the most important molecular models confirm the assumption of convergence 

sufficiently for our purpose. 

It is convenient to write our expression for F (U, V, W) in the form 

(73) F(U, V, W) = —B4(u?+Vv+W 
dx dry 

0T\ A (2hm)r 

dz) ^o 1.3.5... (2r + 3)r 
ft-lC* 

(2 hm)r 
—C02hm (cuU2 + c22V2+c33W2+c23VW + c31WU +c12UV) 2 ■ \ r, yrC2r. 

r = o 1.3.5... (2r-f- 5) 

In the first line, when r = 0, the factor r in the denominator is to be omitted. 

The suffix 1 or 2 must be added to m, U, V, W, C, /3, y when we wish to distinguish 

between F1(U1, V1} W,) and F2(U2, V2, W2). 

Since, by (72), 

(74) Cn T C22 + C33 — 
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it is easy to see that (18) is satisfied by this form of F, while in order to satisfy (17) 

we must have 

(75) /?_!+ 2/3r/(r+1) = 0. 
0 

The products B„/3r, B„yr are quite definite, but B„ and C0 can evidently be assigned 

arbitrarily; we shall decide that their values, though unspecified for the present, are 

alike for Fl and F2. 

The above expression for F (U, V, W) is equivalent to that obtained by Enskog (§ 1), 

by an entirely different method. But the chief difficulty of our problem, and one 

hitherto unsolved, lies in the determination of the coefficients /3 and y ; this is effected 

in the present paper by means of AQ. 

§ 7. The Calculation of AQ,. 

§7 (A) In calculating AQi we shall deal chiefly with A12Qi (cf. § 5 (A) and (67)). 

The particular forms of Qj which we shall consider are 

(76) Q: = (2/im1)s+JU1C12s = B/s>, 

(77) Qr = (2/im1)s+1U12CJ2s EE 

In accordance with §5 (D), the only part of F(U, V, W) which is relevant to 

A3Si(s) is 

(78) _B 1 ^ ui- 
1 CX o 1 

(2 hm)r 

3.5... (2r + 3) f 
&-1C 

2r 

while that which alone concerns ACiU) is 

(79) — 2hmC0 (cnU2 + c22V2 + c33W2) 
(2 hm)r 

1.3.5... (2r+ 5) 
y .0 2 r 

As to the latter, since the remainder of the integrand of ACi(s) is symmetrical with 

respect to V and W, the parts of this integral arising from V2 and W2 in (79) are 

equal, so that c22V2 + c33,W2 can be replaced by ^ (c22 + c33) (V2 + W2) = — |-cn (C2—U2), 

by (74). Hence for our purpose (79) is equivalent to 

(80) ■|(2k)C0Cn(3U2—C2) 
(2 hm)r 

1.3.5... (2r+ 5) 
Vr C2r. 

We shall denote by b12 (riSi) the part of A1233i(s) which arises from the term 

— (2hmi)r+i UiCi2r in Fi(Uj, Vi, Wi), and by 612(r2Si) the part arising from the corre¬ 

sponding term of F2(U2, V2, W2), in each case the numerical and other factors in F 



302 DR. S. CHAPMAN ON THE LAW OF DISTRIBUTION OF MOLECULAR VELOCITIES, 

being excluded.* The corresponding portions of Ii (xi2) will be denoted by I (rxSi, X12) 

and I (r2sl5 X12) respectively. Then 

(81) I (riSh X12) = (2hfi1m0)r+s+1 U\C/i2sUiCi2r de d cos 60 d cos 0R d<f>0 d<pR, 

(82) I (r2.su xi2) = II (2hm0) Yr + s+1 MiS+W+' U/iC'i2sU2C22’' de d cos 60 d cos dR dfc d<f>R, 

(83) b12 (nsi) = (miM2) v’(—— 

- A ??1q (Cn“ + C R2) 
(I (n«i, xia)-I (nsl5 0)} C02CR3_p dp dC0 dCR, 

(84) &i2 (r^j) = — Vlv2 (miM2) ’/2(~ 

-WC02+Cr2) 
{I (>Vh, X12) I (?Vh, 0)} C02CR3_p dp c£C0 dCR. 

The similar quantities relating to will be denoted by c12 (r^), c12 (r2s2) and 

J irisi> X12)? J (r25D X12) respectively, so that 

(85) J (mjSi, X12) 

1(2/W^)r+S+2 U^CV5 (oily —C/) C12r cZe c7 cos d cos 0R d(p0 d<j>R, 

(86) J (r2s1} X12) 

0/+s+2Mls+1M2r+,U/12C,i2s(3U22-C22) C 22r ded cos 60d cos 0Rd<po d<p R) 

(87) ^(r^) — — !'i^2(miM2) 1/2 lj 
\7r/ 

HIg-ta.iwv){j(,.S]i Xl3)_j(rAj 0)} (tfCVjpdpdC„dCB, 

(88) c12(r2s1) = "'^j 
\ 7T / 

III e-^(W+0,, {J (rA, Xi2) _ j (rAi 0)} C/Ce3r dC0 <2CB. 

* We have here included a, factor (2Am)1/* which does not occur in F; this will be allowed for 

subsequently. 
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The Integration with respect to 0R, <j>R, 0O. 

§7 (B) In I (rs, xi2) and J (rs, xi2) it is clear from (48) to (53) that <j>R does not 

appear at all in the integrand, while 61{ and <p0 occur only in the products U\U and 

U'i2(3UL —C-) respectively. We have 

U^lf = C02 cos2 X + /x2]CR2 cos 0R cos 0'R-t- ^-CoCk cos X (cos 0R + cos 0'R), 

U'iUo = C02 COS2 X —CH2 COS 0R COS 0'R + CoCR COS X (w>i* COS dfu — /jLV2,J cos 0E), 

and, remembering the values of cos X and cos 0fR, we have 

j U iUi cl cos 0R cl<p0 d(pR — | n2 {C0‘+/x2iCR“ cos X12—m2i,2C0CR (cos @0+cos 6f0)}, 

||| U\U2d cos 6r d(p0 d<pR = f-7r2 {C02—CE2 cos Xi2 + QAi (^211/2 cos 0'q—Mi2Vi cos 0„)}. 

In the notation of (53) the latter two equations may be conveniently re-written as 

follows :— 

Mi U', lh d cos eR d(p0 d<pR = IiT (012 (cos 0O) + 012 (cos 6'0) -2/x2CR2 (1 — cos xi2)}- 

' r r 
(miM2)v'2 11 U'iU, d cos 0R dfa d<pR = fx2 {mi2’/2021 (cos 0o) + m2iV'0i2 (cos 0'o) 

+ 2 (miM2)1/'Gr2 (1 — cos x) — (miM2)~,/2Cr2}. 

Substituting in (81) and (82), we thus have 

(89) I (rxs1} xu) = fx2(2 hm0)r+s+1 ff {012 +0'12-2M2CR2 (l - cos Xl2)} 0'u ©i 2rded cos 0O, 

(90) I (r2su X12) = i-r2 (2hm0)r+s+1 j {Mi21/i02i + M2iI/20,u + 2 (miM2)1,2Cr2 (l — cos xi2) 

— (miM2)_,/“Cr2} 0/i2®0i2r de cl cos 60 

§ 7 (C) In the case of J (rs, xi2), we have 

(91) , Ml2U?Ui2 = (mi1/2C0 cos X + «21/2Cr cos 0r)2 (ni/2C0 cos X—m2i/2Cr cos 0'r)2, 

in which (cf. the figure on p. 293) X = c0O;c, 6R = cROx, 0'R = c'ROx. In the integration 

over the sphere, with respect to 0R and <p0, since 60, e, xi2 are constant the triangle 

c0cRc'R preserves its form, so that we may, if we please, regard x as the variable 

point and cpRc'R as fixed. Now it may readily be proved, by the method of 

“ poles ” in the theory of harmonic functions, that if A, B, C are three fixed points 

on a unit sphere, and P a variable point, then the integral over the spherical 

surface of 
cos2 PA cos PB cos PC 

is 

xg-Tr (2 cos AB cos AC+ cos BC). 

2 T VOL. CCXVI.-A. 
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Applying this result to (91), identifying A, B, C with one or more of the points 

c0, cR, c'R, and P with x, we may with but little difficulty prove that 

//fill U?Uf d cos 0R d<p0 d<pR = {0i22 + 40i20'12 + 0':22 — 4//2CK2 (012 + 0'12) (l — cos X12) 

+ 4//22Ck4 (l - cos X12)2}• 

Similarly we may show that 

Mi U? d cos 01£ d<p{> d<pR — f 7r20' 12) 

so that 

Mi UV (3Uf — Of) d cos 0R d<j)0 d<pR — {0i22 + §0120^2+ 0ri22 

— 4//2C1;2 (012 + 0712) (l — cos X12) + 4m22Cr4 (l — cos Xis)2}- 

Hence we have 

(92) J (r.Sy, X12) = 57r2 (2hm0) r + s + 2 
0122 + f 0120^2 + 0\2' — 4//2Cr2 (012 + 0'12) ( 1 — COS X12) 

+ 4//.fCR4 (l — cos X12)2} 0'i2S0i2r de d cos 0O, 

and it may be proved in a similar manner that 

(93) J (?Vl5 X12) — f(7T-'(2hm0)r + S+2 | | [mi20212 +§0210*12+ M210/122 

+ 2Cr2 (Ml21/2021 + M21V,0/12) {2 (miM2)'/2(1— COS X12) — (miM2)_V:} 

+ CR4 {2 (m!M2)1/2 (l— cos X12) — (miM2)-1/2}2] 0/i2S02ir de d cos 0O. 

The Expansion of (p2+E—2pcr cos 6)n in a Legendre’s Series. 

§ 7 (D) In order to effect the integration of I and J with respect to e and 0O we must 

have recourse to the expansion of 

(94) P„(/l, °") COS 0) EE (/f + ar“ — 2/1(7 COS 0)n 

in a series of Legendre’s functions. In a recent paper* I have shown that 

(95) P„(p, 0-, COS 0) = 2 (- l)7' (2^+1) nA.k(p2, rr2) P*(cOS 0), 
k=0 

where P/f (cos 0) is the ordinary Legendre’s function of cos 0, of type Jc, andf 

(96) ”A*(m2, -2) = 
(pY y (m+ §)«_* 2(r—i) 

V £l(i+i), («-*),., p 

jf j ]}t (11 + -> )' a (j— t) 

,pj t=l: (t + §)t (t — k)t_k 

a2t 

* Chapman, ‘Quarterly Journal of Mathematics,’p. 16, 1916. The expansion is there not limited to 

integral values of n, though these are alone considered in the present paper, 

f The constant k is necessarily a positive integer; if k > n, nAk = 0. 
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In the last equation the symbol^, where q is integral, is defined thus :— 

(97) Pg = p(p-i) (i>-2)... (_p-g + i). 

From (53) it is clear that 

(98) {012 (cos 0)Yl = P„ (MlC02, mA/,- cos 0) = £ (2&+l) "A*12 P, (cos 6), 
k=0 

(99) {021 (cos 0)}” = P„ (m2C02, mA2, cos 6) = A ( — l)* (2£ +1) HA*21 P/c (cos 6), 

where we have written, for brevity, 

(100) ”A;h2 = aA/c(MlC02,M2CR2) "A*21 = “A* (M2C02, mA2)- 

In our expressions for AQi, 0 takes the values A and 0'o, and the variable e 

is involved only through the latter angle, which occurs in 0r]2 or 012(cosAo). 

In the expansion of the latter (cf. 98) in terms of P;. (cos A0), or, by (48), of 

PA. (cos @0 cos X]2 + Sin 0O sin X12 c°s c), we shall make use of the following well-known 

formula in the theory of spherical harmonic functions :—• 

(101) P7. (cos 0'„) = PA. (cos A cos xi2 + sin A sin x‘12 cos e) 

= PA (cos A) Pa (cos X12) + 2 A (cos 6) (cos X12) cos le. 

The Integration with respect to e and 0O. 

§ 7 (E) Since the integral of cos le with respect to e, between 0 and 2tt, is zero unless 

1=0, from (98) and (101) we deduce the result, 

(102) [-0V de= 2tt £ {2k + l) "A*12Pa (cos A) ?a (cos Xl2)- 
Jo l:=0 

Now from (89), (90), and (92), (93), it is evident that as far as concerns integration 

with respect to e and A we have to consider a number of terms such as 

(103) j j 0m0'12” de d cos A, 

where 0”1 may have the suffix 12 or 21, while 0'” always has the suffix 12. Now 0™ 

does not involve e, so that (102) suffices for the integration with respect to e, and 

leaves us with 

(104) 2ttJ ^ jz (±1)*(2£+1)“A*P*(cos A)} 
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in place of (103); in the first bracket the ambiguous sign is to be + in the case 

012m, and — in that of 021m. 

By the theory of Legendp^e’s functions we have 

(2&+ l) f P,. (cos 00) P, (cos 60) d cos 60 = 0 if Ic ^ l. 

P* (cos 0(,)}2 d cos 00 = 2. 

Consequently 

(105) 012’"0V de d cos 60 = 4tt 2 {2k +1) mA.\2nAk12P* (cos Xi2), 
1-0 

(106) 021m0'12” de d cos 60 = 4tt ± (- If {2k + l) ”*A*21"A*12P* (cos Xl2), 
1-0 

where the upper limit of k is the lesser of the two integers m, n. 

Applying these results to (89), (90), (92), (93), we have, therefore, 

(107) I (r.s,, Xl3) = W (2/im„)'+wl ' 

r+1, s+1 
•y J>+1A1 sAl i rAi S+1A1 

1- = 0 

— 2/x2C3RrA*i2iA*12 (1 - cos xi2)} Pi (cos X12), 

(108) i(r^, X12) = -yv(2/'<rs+i 
V +1, -S + 1 

2 (-1)* [f,\r+1 A*21 °A.\2+A ' A*a1 A*12 
1 = 0 

+ 2C2KrA/‘21sA/A {(miMo)''' (1 — cos X12) 

-i Pi (cos X12), • 

(109) J (rpq, Xu) = 17T3 {2hm0)r + s+2 

, + 2+J[’-+2Aft12*A*13+t’-+1A*J2*+1A*12+rA*2*+2AA1, 
1 = 0 

-4/*2C8h (r+1AVA*12+rAV+1A*12) (1 - cos X12) 

+ 4/*a2C4ErA*12*A*12 (1 - cos X12)2] Pi (cos X12), 

(110) J (7Vl,Xu) - fx3 {2hm0)r+s+2 

r+2, s+2 
■y 

i = 0 

2 (-1Y [Mi2r+3Aft21* Aa:2+fr+1A/i2p+1 Aa'12+/u21rA*2P+2A* 2 

+ 2C2k(fj-i2l'r+1 A/l21'’A*]2+/u21 /2'A*2is+1A/,12) {2 (m]^)1 - (l —cosX12 

+ C4KrAA2isAA:12 {2 (//1M2)'J (l —cos X12) — (miMs)-1'2}2] Pi (cos xi2)- 
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The Integration with respect to p. 

§7 (F) On referring back to equations (81) to (88) it is clear that before executing 

the integration with respect to p, in the calculation of h (rs) and c (rs), we must 

subtract from I (rs, xu) and J (rs, xis), as given by (107) to (l 10), their values 

corresponding to y13 = 0. Now when X12 = 0- we have 

1 - cos xia = 0, P* (cos X12) = k 

Thus where P,. (cos xv>) occurs alone in (107) to (llO), it must be replaced by 

P7, (c-os'xis)-1 in the expressions for L (rs) and c(rs), the terms P/c (cos X12) (l— cos X12) 

and Pft (cos X12) (1— cos X12)2 remaining- unchanged, since the corresponding terms in 

I (rs, 0) and J (rs, 0) vanish. 

The variable p is involved in b (rs) and c (rs) only through p dp and Xi2> the lat ter 

being also a function of CR. We may therefore formally execute the integration 

with respect to p by writing 

(111) 0*12 (CK) = (2&+1) Wi)-'4 CE f {1 -P, (cos X12)} P dp, 
Jo 

„co 

(112) (p'\2 (CB) = (2k +1) (/nv2yk CH I (1 - cos X12) Pa (cos Xi2) p dp, 
Jo 

~CD 

(113) <p"\2 (CH) = (2&+1) (mn2y,k I (l -cos Xl2)2 Pa (cos Xi2) V dp. 
Jo 

The nature of these functions depends on the law of inter-action between molecules 

at collisions, and by keeping this law unspecified we retain the utmost generality 

in our theory, which implies no property of the molecules save that of spherical 

symmetry. 

By means of the well-known equation 

(114) (&+1) Pjt+i (cos x)-(2^+1) cosxPa(cosx) + &P/c_i(cosx) = 0 

the function (p'kvl (CR) can be expressed in terms of 0*12 (CK), for different values of k, 

as follows :— 

(115) <P'\2 (Ok) = 
k+1 

2k + 3 
Ik+\oACll)-(f>\2(GR) + k 

2k-1 
0*7*12 (CB), 

and by a repeated application of (114) we may obtain a similar expression (involving 

<P\2 (CH) for l = k, k± 1, k±2) for (CB). 

To avoid unnecessary formulae, we shall not write down the forms taken by b (rs) 

and c {rs) on substitution of the results of this section till after we have considered 

the next step in the integration. 
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The Integration with respect to C0 and CK. 

§ 7 (G) In the expressions for h (rs) and c (rs), integrated out with respect to all the 

variables save C0 and CR, it is now convenient to make the transformation 

(116) x2 = hm0 C,2, if = hm0 CR2. 

In connection with this we shall use the following notation :—■ 

(117) B\212{m, n) = (:2hm0)m+nm A\f A_\2 = (2hmfn+n.,nAk(p1G2, 

_ (ZnJrmff, 2p2hrnQGR2). nAk (2^1/im0C02, 

- “A* (2n\X2, 2a,f). nA!c{2p.xx2, 2,ug/), 

• HA/c (miC02, mAV) 

2fj.2hmaGf), 

(118) B/c2ii2 (m, n) — (2hm0)m+n. mAk2lnAk 12? 

= mAk (2fi2x\ 2,u1?/2) • "A* (2,U].r2, 2//++)- 

We have here used the fact—cf. (96)-(l00)—that nAk(p2,f) is a homogeneous 

polynomial of degree 2n in p, <x. 

We now use equations (83), (84), (107), (108), in conjunction with §7 (F), to 

write down the following expressions* for h (r, s), taking particular note of the signs 

of the various terms :— 

(119) h12(rlS,) = 
T +1 * S 4* 1 

2 [^u(r^){B*(r+l, s) + W(r, s+1)} 
k = 0 

+ ±fjL2y2fk12 (r12y) B7 (r, s)]1212 &V dx dy, 

(120) b12 (++) = J j Bk(r+l,s) 
k = 0 

-2 M-VB‘ (r, s) + m+B‘ (r, 5+1)} 

- 4 B*(r, s)]2112 x’pdxdy. 

In a similar way, from (87), 88), (109), (110) we obtain the following expressions 

for c (r, s) :— 

(121) e-<**+y*> 2 [/12 (TvJy) {B* (r + 2, 5) + fB* (r+1, * +1) 
r = o 

+ B7, (?', s + 2)} + 8 p.2f <pr,\2 (~12?/){B71 (■?• +1, 5) 

+ Bk(r, 5+1)} — IOmA/V^h^tiiV) B7c(r, 5)]1212x2?/2rfa; dy. 

* In (119)—(122) the suffixes 1212 or 2112, which should be appended to the symbols Bk (in, n)—the 

same for all those within any one square bracket—are for convenience of printing indicated only by 

being placed after the bracket itself. 
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(122) c12 (r2+) = *4 e-(**+*2>'+'£*' (-1 )* [#12 (ri2y) {pvBk (r + 2, s) + fB*(r+l, s+l) 

+ +21B4 (r, s+2) — 4:(fx1fx2)~'l'y2 (/n^'B4 (r+1, s) 

+ fj-21 ^'B4 (?*, s +1)J + 41B/ (?■, s)} 

— 8 {fj-\fJ-o)'l2y2(pf,ci2 {^ny) i^i^B4 (r +1, s) 

-2 W-VF(r, sJ + ^B^r, s+l)} 

-16,ui//,?/40//4i2 (t12?/) B4' (r, s)]2112 «Y clx dy. 

The symbol r in 0*12 (rI2?/) is defined by the equation 

(123) T12 Vh vm. 

The integration with respect to a? in the above expressions is of a quite elementary 

nature, but it will not be executed in general terms owing to the complexity of the 

polynomials B4 (r, s), which are integral in x2. Any individual term in the integrands 

of (119) to (122) is of the form (so far as concerns x) 

[ e~x'x2{m+') dx = 
Jo 

The integration with respect to y will similarly not be executed in general; in any 

case, owing to the unspecified functions </>412 (ry), this integration could be only 

formally completed, and until we come to consider special types of molecular models 

we shall be content to leave b (r, s) and c (r, s) in the above form. 

+■ 'fe(m + i)„ (124) 

The Complete Expression for A12QL. 

§ 7 (H) On referring back to § 7 (A), and the definition of b (r, s), c (r, s), it is clear 

that we are now able to write down the complete expressions for A12Qi in the two cases 

we have considered. This involves taking into account all the terms (r = 0 to co) in 

F(U, V, W), with their appropriate coefficients, as in (78), (80); and in order tc 

make the expressions more symmetrical, it is convenient to change the values of Qx 

slightly, by multiplying them by certain numerical factors (cf 26, 30). Thus 

writing 

(125) A. 
-l.S-1 

~~ 1.3.5. 

_1_ 

(2r + 3) r . 1.3.5... (Zs + Sjs’ 

“1.3.5... (2r+ 5) .1.3.5... (2s+ 5)’ 
(126) 
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we have the following equations for A12QX in the two cases under consideration :—- 

(127) - —£?—UU— A1;,u,c,2' = B i 
1.0.0... yZS I CX )•=0 

(128) 
S+l 

1 .3.5... (2.S- + 5) 
A12U2iCrs — C0Cn A A7,., {yri j C12 ("TiSi) + yr 2C12 

r=0 

The corresponding values of AnQi in the two cases are obtainable from (127), (128) 

by replacing the suffix 2 by 1 throughout. We will write hn (?++) and Cn (ri$i) 

respectively for the values taken by bi2{riS1) + b12(r2s1) and c12 (r1s1) + c12 (r25j) when the 

distinction between the suffixes 2 and 1 in these expressions is abolished. In place of 

Hi and iul2 we now write ^, and /u12 = fj.2l = B w0 = 2mb while B'\2{m, n) and 

B*21 (m, n) become identical, and equal to 

(129) “A* (x2, if) nA!c (x2, if) = B* (m, n). 

It is convenient to express bn (rxSi) and cn (rj+i) in terms of </>hi (ry) only, eliminating 

<j/\i (ry) and (~//) by means of (115) and a similar equation for <f>"kn (+//). When 

this is done it is found that the coefficient of fn (ry) vanishes for odd values of k, on 

account of the factor ( — l)* in b12(r2s1) and c12(?’2Si). The following are the results 

thus obtained* :— 

(130) Mnsi) = W (Tliy) 

+ 2 if 

k = 1 

J 2 7; + 1 

L4&+1 

[r, s] 

B2k{r+l,s) + B2k{v,s+l) 

B”+1 (r,s) + j|U B»-' (r, s)-B“ (r, * x2f dx dy. 

(131) ci: (rlSl) = 2 ^1(T11y)[B“(r + 2,«) + tB“(r+l,s+l) + B*(r,J> + 2) 

+ Bf 
I 47) +1 

Bak+l{r+l,s) + B2k+1(r,s+l 

+ 
2k 

+ 4 y 

47-+1 

f(27- + 2) (27:+ 1) 

1(47: +3) (47)+1) 

(27:+l)2 

B 2k~\r +l,s) + B2k~\r, s+l))-[ B2k (r + 1, s) + B2A (r, s +1)) 

B2k+2 (r, s) 

+ + 
4T:2 

(47)+3) (47;+1) (47) +1) (47;-1) 

27; (27:— l) 02/C-2 / \ 
(47-+l)(47:-l) 1 ' 

_9(,/27r+_l B2/C+1 (r, 5) + 2^B2,_, ^ 

+ 1 B2* (r, «) 

\47;+l 47;+ 1 
a;2// dx dy. 

* In these expressions 4>ku (rny) is the equivalent, for an encounter between two molecules of the seme 

kind, of <Bi2(rn!/) for molecules of different kinds. Thus (c/. Ill) 

<Bn (rny) = 2 (27: + 1) CR f {1 - P* (cos Xn)}pclp, 
Jo 

where the law connecting x.11 with p and CR may differ from that for yi2- Also rn now becomes (2/i?«i)_1/2, 
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The term corresponding to k = 0 is absent in both the above cases, since <j>°n (tuV) 

is itself zero, so that 9'/u (niy) is the function (j>n (rny) of lowest order (k = 2) in 

bn (nsi) or Cn (nsi). The upper limit of k in the case of bn (n^i) is equal to the 

integral part of the lesser of the two quantities \ {r+1) and ^ (s+1); this is denoted 

by <V, s). Similarly the upper limit of k in the case of cn (nsi) is the integral part 

of the lesser of the two quantities |-(r + 2) and |-(s + 2), which we denote by [r, 5]. 

Thus, when r = 0 or s = 0, bn (rxs 1) = 0. 

We can now write down the complete expressions for AQ, in the two cases above, 

as follows:— 

(132) 
(2 hm,i)s+1 

1.3.5... (2s + 3)s 
AUA 2s 

1 0T 00 l 
= rp "5 2 , 1 {&11 &12 (^l^l) } +Ml2^/^r-l,2^12 (^2^1)]? 

1 OX r = 0 

(133) 
(2hnii)s+1 

1.3,5... (2.S + 5) 
AU^Cj25 = C0cn 2 X'„ [yrtl{cu (nSi) +c12(nsi)} + y,,2c12(>Vh)]. 

r = 0 

In the present paper we are concerned with the application of these formulae only 

to simple gases, in which v2 = 0 and hence b12 (r^) = b12(r2s1) = c12(r1s1) = c12(r2Si) = 0. 

It is convenient to write the reduced equations in the following form :— 

(134) 

(135) 

_(2hm)s+“_— A ljC2(s+1) — (LL 2 B b 

1.3.5... (2.5 + 5) (s+ l) , T dxrtfr r 

(2 hm)s+1 45 

1.3.5... (2.s + 5) 2v 
^ AU2C2s = Cn 2 yrCr 

r = 0 

In (134) we have substituted r+1, s+1 for r, s in (132), multiplied by 3/v, and 

used the notation given by 

(136) brs EE — B0Xr s6n [r +1, s+1); 

the first term in (132), with factor /3_i, vanishes, since bn{0,s) = 0. 

(135) we have written 

(137) QA rsCU ( ?’l5l)‘ 

Similarly in 

§ 8. The Expressions for the Coefficients in the Velocity- 

Distribution Functions. 

§ 8 (A) We have now obtained expressions for AQ, the rate of change of a function 

of the molecular velocities due to encounters, in two different ways : in § 3 AQ was 

found from the equation of transfer, while in §§ 4-7 it has been determined by direct 

calculation. By comparison of (26) and (134)—substituting s+1 for s in the former 

—and of (30), (72) and (135), we deduce from these different expressions for AQ the 

YOL. CCXYI.-A. 2 U 
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following linear equations connecting the unknown coefficients in the velocity- 

distribution function 

(138) i/3A.= l, 
r = 0 

(139) 2 y,c„ = 1. 
r = 0 

These are true for all values of s from 0 to (», the coefficients brs and crs being 

completely determined, in terms of the molecular data, by (130), (l3l),# and (136), 

(137). If we assume that certain convergency conditions are satisfied (138) and (139) 

lead (in the way usual in the case of a finite system of linear equations) to the following 

expressions for ft and yr:— 

(140) ft = Vr (brs)/V (&„), yr = Vr (c„)/V (c„), 

where V (brs) and V (c„) denote the infinite determinants formed from the arrays (brs) 

and (crs), thus, 

(141) v(b„) s K ^10 ^20 ^30 <1
 

C2 *4 III
 

Coo C10 C20 C30 

601 K b'21 ^31 C01 cu C21 C3I 

^02 2 b'22 ^32 C02 ^12 C22 C32 

bos b\s ^23 C33 C03 C13 C23 C33 

and Vr (brs), Vr (crs) denote the determinants obtained by replacing each element of 

column (r) in V (brs) and V (crs) respectively by unity. 

The General Expression for the Velocity Distribution Function. 

§ 8 (B) This completes our solution of the fundamental problem of this paper, i.e., 

the determination of the velocity-distribution function for a “ nearly perfect ” simple 

gas, composed of monatomic molecules of the most general type, and which is slightly 

non-uniform as regards temperature and mass-velocity. The solution will be sum¬ 

marized as follows (cf. (10), (73)):— 

(142) /(U,V,W) = 
hm\s/i 

7r 

-/jm (u2 +V2+W2) 

L y, 1 /.. 8T .. 3T ...3T\ " (2hm)r 

l B° T (Ua, v ay WaJ,.?o 1.3.5...(2r + 3)r 

- Cu (2hm) (cuU2 + c22V2 + c33W2 + c23V W + c31WU + c12U V) 

ft-402 2 , 

y (2 h?n)r ,2,1 
to 1.3.5...(2r+5)yr°7’ 

* The suffix 1 throughout these equations may now be omitted. 
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where cn, c]2, &c., are given by (72). The coefficients j8r and y„ for r = 0 to r = oo, 

are given by (140), where (cf (136), (137), (130), (131)), 

(143) brs = 32B0,X« We-*'* 2 fk(ry) 
[r,s] 

& = 1 
B2/t (r + 2, s +1) + B2/t (r +1, s + 2) 

+2^1ifTTB!it,(,'+1’s+1)+4TnB”',(,'+1’s+1) 

x y2 dx dy, — B2A (r +1, s +1) 

(144) crs = 72C0A,wjje-^ 2%* (r^)[B2* (r+2, sJ + fB2* (r +1, s+l) + B*(r, 6 + 2) 

2Jc + l 
W 

4&+1 

2 h 

B2A+1 (r+1, s) + B2k+1 (r, 5 + l) 

+ (B 2k~\r +1,6') + B*-1^, s -1) j - (W*(r +1,6) + B2A(r, 5 +1) 

+ 4+ )',(2^ + 2) (2k + l) b^+2 / \ 
V t(4& + 3) (4& + 1) [V,S) 

4F + lW*(r,5) + 
(2£+l)2 

(4&+3) (4A+1) (4/c+ 1) (47c— 1) 

where (cf (123)) 

(145) 

and, by (ill), 

(146) 

2lc (2k—l) a/ \ 

(31+1+4++ B (r’s) 

-2(!TT bw+)+4|ib*-1+) 

= (2Am) ,/2, 

x2?/2 dxdy 

fk (z) = 2 (4A+ 1) 2 {l-P2/£ (cos x)}B 
J 0 

where P* (cos x) is the usual Legendre’s coefficient, and y is a function oi p and 2 

which depends (§ 4 (D)) on the law of inter-action between two molecules at an 

encounter. The factors Ars and \'rs are defined by (125), (126), while the functions 

B* (r, 6), which are integral polynomials in x and y, with merely numerical coefficients, 

are defined by (129) and (96). In the upper limit of Jc, [r, 6] denotes the integral 

part of the lesser of the two quantities \r +1, 3-5 +1. 

The factors B0, C0 are, as yet, arbitrary; we now assign to them the values 

determined by the equations 

(147) K — 1) C00 — 1* 

This makes B0 and C0 each equal to v~1 multiplied into a function of (2Am), i.e.f of 

2 u 2 
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the absolute temperature. The elements brs, crs and the coefficients ftr, yr then become 

functions of the temperature only. 

The coefficient /3_a is not determined by the above equations, but is given (cf (75)) by 

(148) 8_a= - 2 ft/(r+1). 
r = 0 

Properties of the Determinants V (brs), V (crs). 

§ 8 (C) On inspection of (143) and (144) it is evident that 

(149) b„ = bsr, crs = csr, 

so that V (brs) and V (crs) are symmetrical determinants. 

In expression (143) for brs, the variables of integration, x and y, are never negative, 

so that (cf. (129), (96)) rA*, sAk and Bk(r, s) are essentially positive (or zero) for all 

integral values of r, s, and Jc; further, since P* (cos y) never exceeds unity, <p2k (tij) is 

also always positive. It is evident, therefore, that brs must be essentially positive 

if this can be proved true of 

(150) B2*('r+2,s + l) — 2y2B2k(r+l, s +l) + B2*(r +1, s + 2). 

Now 

(151) B2*(r + 2, s+l)-rB2/f(r+l, s+l) = S+1A2*[r+2A2k-y2r+1A2k'] 

= s+ij^kl y 
\x 

2k r + 2 

V 

_ *+i^2fc( a 

\X 

V\2k A2 (r+ l)t_! (n + f)t-2k-i 

t = 2k (^+1l)< (t — 2k) 

' (r+ l)t (r + -§-), 

2k (t + -%)t (t + 2li 

x2ty2(r+2-t) + 2 — t) (t — 2Jc) + t(r+%)}, 

' (r+2)t (r-{-f)t_2k 2t^.2(r+2-t) '-V \'r 1 1 Jt V 1 ~f 2 ft-2k pit,.2 (r+2-t) 

L. "a (t+i), (t-2k) ! J ,ra (t + i), (t + 2k) ! J 

every term of which is positive. Interchanging r and s in (151), and adding the result 

to the latter, we obtain (150), which, with brs also, in consequence, is essentially 

positive. 

From (151), moreover, it is clear that the numerical coefficients in (151) or (150) 

increase with r or s, and the .same is readily seen to hold good also in the case of 

B* (r, s). As r or s increases, therefore, the numerical coefficients and the degree 

(in x and y) of the integrand of (143) increase, while if both r and s increase, new 

positive terms are added to the integrand. Hence, provided that the functions 

fk ('ry) satisfy certain simple conditions,* brs steadily increases with r or s, and the 

consideration of even a single term of (151) or the integrand of (143) shows that this 

increase is without limit, i.e., brs tends steadily to infinity with r or s. 

* It is easy to see that the increase with y of <pk (ry) is less rapid than that of y; if <£2fc(U/) constant 

or steadily increases, though less rapidly than y, brs will steadily increase with r or s. But much less 

restrictive conditions might be devised, e.g., if pk (ry) decreases like y~l, the above result still holds good. 
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I have little doubt that, with rather more trouble, crs could be shown to share the 

above properties of brs, but I have not made any serious attempt to prove this ; from 

the numerical calculations in § 10 (A) it appears probable that the increase of crs with 

r, s is more rapid than that of brs. 

Properties of the First Row or Column of V (brs) and V (crs). 

§ 8 (D) The numerical values of brs and crs obtained in § 10 suggest that many 

further general properties of these elements might be determined, with sufficient 

trouble, and that the convergence of the determinants V (brs) and V (crs) might thus 

be,demonstrated. Owing to the considerable algebraic difficulties involved, however, 

I have so far made little progress towards the proof of such properties, except for 

the case when r or s is zero, i.e., for the elements of the first row or column of 

V (brs) and V (crs). It will be shown that 

(152) br0 = b0r ~ or0 = c0r 

for all values of r. 

This will be proved as a particular case of the more general result that 

(152a) (s + l) brs(k) = crs(k) when the lesser of r and s is even, and k = [r, s], 

where brs (k), crs (k) denote the parts of brs and crs respectively which are due to a 

particular value of k in (143), (144), while [r, s] denotes the upper limit of k, as usual, 

i.e., k — fe+l or ^-s + 1, whichever is the less. Thus if we suppose that r = s, and 

that s is even, (152a) takes the form 

(153) (s+l)6rs(|-s+l) = crs(|-s + l). 

When s = 0, this value of k is unity, and br0( l), cr0(l), which usually form only 

a part of brs, crs, become the whole, so that (152) is the particular case of (153) 

corresponding to this value of s. 

Since B/l (r, s) is zero when either r or s is less than k, some of the terms in 

brs (i’S-t l)5 crs(l'5+l) vanish. In fact, as may readily be seen from (143), (144), we 

have 

(154) Mi5+1) = 32B0!A.rs || e~(x‘+y")F+2 (ry) |bs+2 (r+1, s + 2) 

+ " ^ + ^ r Bs+1 (r +1, s +1) \ x\f dx dy, 
Zs “T o 

B5+2(r, s + 2) + 4 (g + 2)y*Bs+1 (r, s + l) 
2s + 5 

+ 
4 (s+1) (s + 2) 

(2s + 3)(2s + 5) 
x2y2 dxdy 

(155) c„(js+i) = ne,v\'r. 
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From (96) it is easy to see that 

(156) 

so that 

k\ 
*A‘ = 

(157) Bs+2 (r+ 1, s + 2) 4- 2-6 + ^) (r+l, s + l) 
ZS + u 

_ (5 + 2)! (r+ l)j {r+ %)_t-s-\ r2t 2(r+s + 3-«) 

(s+f),„ <-». (t+i),(i-»-l)l V 

By putting r in place of (r+l) in (157), and adding {2 (s + 2) y2/(2s + 5)} times a 

similar expression in which r, s replace r+l, s + l in (157), we also have 

(158) B-(r, s + 2)D-A±flrB-+,. + s) 

(s + 2) ! ^ )’t (^'T~ir)t-s m2t/,,2(r+s + 2—t) 

~ uhl; (t+i), («-»)i J 

We now substitute the expressions on the left of (157) and (158) into (154) and 

(155), and integrate with respect to x by means of the well-known formula 

[ e X‘x2(t+1) dx = (t + ^)t', 
Jo 

(159) 

we thus obtain the equations 

(160) 6„(|S + l) = 8B0^'%,fe-='V‘+a(T2/)4W^ 2 (>' + Vrw‘-‘><fo 
J lS + tb + 2 t = S +1 (t — S— ljl 

(161) c„++i) = i8C„^v„n-»y«(+7i++- s '>][-r-ui=itf<’+.±*-'>dy. (s + 2)! A (r+ f)t_8 „.2(r+s+3^t) 

(•S + -|)s+2 * = * '(^ — 5) • 

or, changing the notation so as to make the lower limit of t zero, and inserting the 

values of \rs, \'rs according to (125), (126), i.e., 

(162) \rs = 

we have 

9 —(r + s+4) 

(r+l) (s + l) (r + f)r+2(s + |-)s+5 
X' = 

2-(i"+s+^ 

(r + t)r+2 (S+l")s+2 

(163) 6„(Js+l) 

_ 2-(r+S+l)g V.  _n_(-g + 2)! [ 
0 (s+l)(r + f),+2 {(,+*)„,}* 

V+2(r?/) 2* r_A(r + f)t2/2(r+3-rt^ 
t = o 

(164) c„(i* + l) 

= 9.2-(r+s+3)aB7T,/3 —^ 
(s + 2)! 

(r + f)r+2 {(5 + f)S + 2}2* 

e~y2<ps+2 (ry) 2 r-Alr+fX*/2^3-4^. 
( = 0 
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The ratio of these two expressions is given by 

brs +1) _ A 

Crs (^S + 1 ) S + 1 

where A is a quantity independent of r and s. When s = 0, as we have seen, 

brs +1) and crs (|-s + 1) become identical with brs and crs respectively. Hence 

K = A 

Cr0 

and since B0 and C0 have been chosen so that bm = 1, c00 = 1, the value of A must be 

unity. Hence, when s is even and r ^ s, 

(s+l)brs(^s+l) = crs (|s+l), 

with the consequence that 

^r0 — Cr0 

as a special case. 

It is convenient to introduce the notation 

(165) f e (ry) y‘1"*0 dy = fir‘'*(m+|)»K,,_ai,to 
->0 

so that if <p2k (ry) had the value unity, the value of Km_2t-A. would also be unity, by 

(159). In terms of this notation (163) and (164) may be written as follows : — 

(166) 

(167) 

Mio+1) = 2~(r+s+3) B0.t tSs + V\iZ r_.C K. 2 ^ r-sv-'t-lvr—s—1, |s+l) 
S+ 1 {(s + -f)s+2}2« = o 

«»(*»+1) = 9 ■ 2-(r+,tB C0w,;r_»C,K,_,_«,„+,. 
US+^b+2J- 1 = 0 

By writing t = r—s — t' it is evident that 

(168) 2 „_,C(Kr_,_a,+1 = 2 r_.C,K,,h+1. 
1=0 1=0 

By giving to r and s in (166), (167) the value zero, we have 

(169) b00 = ^5B0rxK0il, c00 = ^5C0J>7rK01, 

whence, remembering that (cf. (147)) B0 and C0 are so defined as to make bM and c, 

each equal to unity, we have 

(170) ft — 2.25. 
-L>n — a. 

1TV K0>1’ 
On = 25- 

1TV. K0il’ 
T} — iiP -Dq — 4^0* 
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We will substitute these values into (166), (167), and write s = 0, in order to obtain 

expressions for br0 and cr0 as follows :— 

Cm) 

where we have written 

(172) 

so that 

(173) 

0? Ko — K — cr o c0r Krj h 

= 2"'2 rCtKtil, 
t = 0 

K».- = GM“ e-’VWtfdy. 
1 0 7T Jo 

It is of interest to examine also the rth successive difference of 6r0 or cr0, which we 

shall denote by Sr0br0 or Sr0cr0. We have 

(174) WM =/.(r)-A/(r-l) + ... . 

Then, from (172), it is easy to see that 

r r—m 

Sr^r = 2-' 2 (-2)”VC„ £ r_,C,Ktl 
m — 0 t = 0 

= 2- 2 ,C,Kt, 2 (-2)-,_,C. 
t = 0 m = 0 

= (-2)- Jf-ll'A, 
t = 0 

since 

Hence 

(175) 

r—t 

2 (—2)V,C, = (1-2)'-' = (-1)'-'. 

JA. = = (-2)-'(*„)-’ 2 (-l)'rC,K,,. 
< = 0 

Similarly the r,lh difference of 

2 Dy 2 r_sGtKj i/2S+1, 
t = o 

which is the part of &rs(f-s+l) or crs(|-s + l) which depends on r (s being even and 

r s) is equal to 

(-WS's (-iyra.k, 
Z t = o 

Symmetrical Expressions for 2 /3r and 2 y, 
r = 0 r = 0 

§ 8 (E) While V (brs) and V (crs) are symmetrical, the derived determinants 

Vr (brs), Vr (crs) are necessarily lacking in symmetry, and our expressions for (3r and yr, 

when we attempt to make successive numerical approximations to their values 
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for particular types of molecular models (cf. § 10), appear not to converge at all 

rapidly. Fortunately, in our applications of the velocity-distribution function to the 

theory of viscosity and thermal conductivity, we need to know not the individual 
co oo 

values of the fts and y’s, but only the sums 2 /3r and 2 yr; for these it is possible 
r = 0 r = 0 

to determine symmetrical expressions which are found, in practice, to be highly 

convergent. 

In what follows we shall use the symbol §mn placed before a function of the 

integral variables r, s (such as brs or crs) to denote the (on, n)th successive difference 

of this function with respect to r and s respectively. Thus 

<U/(n s) = f(r, s)—mC1(/(r— 1, s) + mC2f(r—2, s)-... 

4, /(**, s) = f(r, s)-nCif (r, s-1) + „C2/(r, s-2)-... 

Lnf(r, s) = <Lo f(r, s)-nGi Sm0f(r, s-1) + „Ca $m0f (r, s-2) -... 

= nf(r, s)-„A S0nf (r—1, s) + mCa$Unf(r-2, s)-... 

When we substitute brs or crs for f(r,s) in the above formal expressions, any term 

with a negative suffix is to be omitted as being zero. 

Since the value of a determinant is unaltered by subtracting from the elements of 

any one row or column the corresponding elements of any other row or column, and 

since this process can be repeated indefinitely often, it is clear that from (141), by 

subtracting the (s — 1 )th row from the sth, for all values of 5 from 1 onwards, we have*' 

(176) V (bn) - V (S01brs), V (crs) = V (S0lcn). 

The same process applied to Vr (brs), Vr (crs) leads to determinants identical with 

V (S01brs) and V (^01crs) respectively, save that in the rth column all the elements are 

zero except the one in the first row, which is unity. Evidently, therefore, V;. (brs) 

and (crs) are the rth minors of determinants which are respectively identical with 

V (S01 brs) and V (^01crs), except that in each case all the elements of the first row have 
oo . oo 

the value unity. Consequently the sums 2 Vr (brs) and 2 Vr (crs) are equal to the 
r=0 r—0 

sums of the minors of the two determinants just described, i.e., they are equal to 

these determinants themselves. Thus, by (140), 

y o V (<^oi b r,;) y _ V (<bic r.J 

Jr V(J01U’ - = V(JMcr,)’ 

where we have 

(178) b'0s= 1, c'0s= 1, (s = 0 to co), b'rs = brs, c'rs = crs, (s = Otoco, r= 1 tooo). 

VOL. CCXVI.—A. 

* When s = 0, 801 should be replaced by 800. 

2 X 
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To the above determinants we now apply the same process of differencing by columns 

which has already been applied by rows, and we thus obtain the equations 

(179) 
y R _ V (Snb'„) 

v(ju6„)' 

CO 

r = 0 

v (Jn<4) 

The determinants V (Snb'rs) and V (Snbrs) are identical save in their first rows; all the 

elements of the first row of the former are zero save the first, which is unity. Hence 

V (f,,//,„) is equal to the principal minor of V (Snbrs) ; we shall denote it by 

V' (Snbrs). Hence, and with a similar notation for the principal minor of V (Sucrs), 

we have# 
GO 

■V 

r = 0 
Pr = 

Z (W 
v(Snb„) ’ 

_ V' (SuC„) 

V (''ll'’,.) 

All these determinants have now regained a symmetrical form. 

It is convenient, partly for the sake of elegance, and also because it imparts a 

highly convergent form to the elements of our determinants (cf. § 10) to continue 

this process of differencing still further, as follows. We repeat the whole of the 

above operation of differencing by rows and columns an indefinite number of times, 

beginning now at the second row and column (thus leaving unchanged the values 

both of V and its principal minor), and afterwards successively at the next later row 

and column than on the previous occasion. The general element thus becomes Srsbrs 

or Srscrs, and we have 

(180) 
y' 
V (SJJ ’ 

Z Ra.) 

where the dash (') denotes the principal minor of the corresponding determinant. 

These expressions could, of course, have been obtained directly by a re-arrangement 

of the original equations of transfer, but it seems preferable to use the latter in the 

more simple, natural forms chosen, and to make this transformation by differencing 

in relation to the determinants formed by the elements brs, crs. 

§ 9. Consideration of Particular Molecular Models. 

§ 9 (A) While, as we have seen, certain general properties of the elements brs, crs can 

be demonstrated without the assumption of any property of the molecules save 

spherical symmetry, it is possible to carry our investigations much further when we 

represent the molecules by particular models of simple type, such as point centres of 

force, or rigid elastic spheres. This involves, primarily, the examination of the 

functions 02/c (ry). 

* When r or s is zero, the corresponding suffix of 8n should also be written as zero. 
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Molecules which are Point Centres of Force varying as r~n. 

§ 9 (B) When the molecules are point centres of force varying inversely as the 

power of the distance, the angle y in the expression (146)—cf. § 4 (D)—is given by 

the following integral* :— 

n 

(181) X 

V- 

— 9 ( [l x] v‘dr]. 
Jo 

Here % is the least positive root of the equation [l — >/2— (>//«)" x] = 0, and a is a 

multiple of p, thus, 

(182) 
fn—1 y-Von \-zt In— 1V_V, 

a~P \4K?J ~ P ( Km ) 'K"~ ’ 

where K is a constant which measures the intensity of force between two molecules 

at unit distance. Hence {cf (ill)) 

where nA/c is a constant depending on n and k, but not on y or h (i. e., not on the 

absolute temperature). 

When this value of fk (r y) is substituted in our expressions for hrs and crs, it 

becomes possible to execute the integration with respect both to x and to y in terms 

of gamma-functions. Thus {cf (165)) 

(184) I e y'fk {ry) ?/2(ra+1) dy = {m+%)m K 
Jo 

m — 2k, k 

n-5 

/ 1 \a i) / 2 -Way rK2-^ 
so that 

(185) — TV — _-V2 A 
— xv0,1 — 1 5” n1*-! 

'll - 5 

X \2 (n— 1) 

2 hm) 
r U 

n— 1 

* Cf. § 14, p. 454, of my former memoir, ‘Phil. Trans.,’ A, vol. 211 (1911). The V0 of the formula 

there given is the relative velocity of two molecules, which in our notation is (/^iaW ^Cr = 2CE when the 

gas is simple. 

2x2 
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and 
71 — 5 

(186) K„ = 2tt-\A1 ({(« +f)1+,}r (« + 4■ 
n— 1 

t + 3 — 
n— 1 

(^+f )t 
K0,i. 

Hence the values assumed by B,, and C0 in this special case are as follows (cf. 

(170), § 8(D)):— 

(187) Ba = 
(2 km)'1 

71—5 

71— 1 153 

32 AA,r 4— 
n— 1 

C0 = 
(2 Am)1^ 

71—0 

1 375 

8 (4 — 1 v 

From (186) we have 

A — cr0 — /cr/«-0 — 2 r 2 rGtKtil/K0il 

t = 0 

rt 
t -f- 3 — 

= 2~r 2 — 

t=oti (t+f) 

= 2“rF f-r, 4 

n— 1 

n — 1 
? 2"? ■i > 

in the notation of the hypergeometric function. It may hence be shown, without 

much difficulty, that (if n > 5) br0 and cr0 steadily increase to infinity with r, the 
n—5 

rate of increase being comparable with that of rn~x. 

Since the functions </>2k (Tiy) all depend on h in the same way, it is clear that, with 

the above values of B0 and C0, the elements hrs and crs and consequently, also, the 

coefficients (3r and yr in the velocity-distribution function for molecules of this type, 

are independent of h, i.e., they are independent of temperature. They are, indeed, 

pure numbers, depending only on the molecular mass and on the force constant of the 

molecules. 

It is of interest to determine the value of the elements Sr0br0 (or Sr0cr0) of the outer 

row or column of V (Srsbrs), in this special case. We have, by (175), 

GAo = GoGo = (-2)“r 2 (-l)irCtKt,i/K0,i, 
t = 0 

t + 3-—— 
= ( — 2)~r 2 (— iTT \_n^_la 

1 ^ 1 (t+f)t t = 0 

= (_2)-F(_r,4- —1), 

in the notation of hypergeometric functions, or, in terms of gamma-functions, 

(188) SJ>„ = Jrtc,„=(-2)- 
r(}) r r-i+ 

71— 1 

r(r+j)r 
n— 1 

= (-2)“ 

r—1 + 
n— 1 

(»• + 4), 



THEORY OF VISCOSITY AND THERMAL CONDUCTION, IN A MONATOMIC GAS. 323 

As r tends to infinity, the last expression tends to zero more quick] y that 

2~v ^ n—1) 

and also it is alternately of positive and negative sign, after the first two terms 

(both S00br0 and S10bl0 being positive). 

Maxwellian Molecules: n — 5. 

§ 9 (C) It is now easy to see what are the special properties of the fifth-power law 

(n = 5), the law obeyed by the molecules which we term Maxwellian, which enabled 

Maxwell to work out the theory on this hypothesis with such great simplicity and 

accuracy. When n = 5, we have from (186) 

(189) K,, = SA„ 

which is independent of t. Hence, by (170), (171), (172), 

(190) i — K0 1 — gAj, kt — 2 rCtKtj j — 2 rK0il 2 rCf — K0 1 — k0, br0 — cr0 — 1 ; 
t =0 <=0 

(191) Sr< obr o = Srw0c„ = (-2)- 2 (-iyrCt = ( — 2)~r (l —l)r = 0, (r> 0); 
t = 0 

(192) B0 = ^ C0 - 25 (.A)-1. 

From (191) and the equation 500 = c00 = 1 we deduce that in this case the principal 

minors of V (Srsbrs) and V (Jrscrs) are equal to these determinants themselves, i.e., 

(193) 2 /3r = 1, 2 yr= 1 (Maxwellian molecules), 
r = 0 r = 0 

while from (190) it appears that all the elements of the first row and column of 

V (brs) and V (crs) are unity. Hence in V(. (brs) and V,. (c„) the first column and 

column (r) are identical, so that we have 

(194) 

(195) 

V (b„) = 0, V, (c„) = 0, r > 0 j 

V„(U'= V(6„), V (c„) = V (c„) J 
(Maxwellian molecules), 

whence also, by (140), we have 

(196) /30 =1, yo — 1) ^r—yr— 0> (f> 0) (Maxwellian molecules), 

and also, by (148), 

(197) =-&=-! (Maxwellian molecules). 
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In the case of molecules which obey the fifth-power law, therefore, the velocity 

distribution function has the simple finite form (cf. (142)) 

(198) /(U,V,W) = 
7T 

e -hm( U2 + V2+W2) 

1 “(nA,)-1 {V f (U |f + V|f + ) U1 +l2hmV) 

+f (2Jim) (cnU2 + c22V2 + c33W2 + 2c23VW + 2c31WU + 2c12UV)j 

(Maxwellian molecules), 

where C2 = U2 + V2 + W2, cu, c12, &c., are given by (72), and (cf (183)) 

(199) 5Aj = 10 (|-Km)1/'2 [ {l—P2(cosx)} a da — ^(Km)1/8 [ siifiy • a da. 
Jo Jo 

poo 

M axwell# calculated the value of the integral sin2 y . «■ da, the forces being 
Jo 

repulsive, by numerical quadrature, and found that 

poo 

7T sill2 x . ada = 1'3682, 
Jo 

so that, for repulsive forces proportional to the inverse fifth power of the distance 

(200) 5Aj = — U3682 (Km)1/2, 
2 

where Km2 is the force between two molecules at unit distance. 

Molecules which are Rigid Elastic Spheres. 

§ 9 (D) We next consider molecules which behave at encounter like rigid elastic 

spheres of radius a-. This particular molecular model has been more used than any 

other, in researches on the kinetic theory, on account of its simplicity and concreteness, 

which aid the imagination in following or constructing “ descriptive ” theories of 

gaseous phenomena. As regards the analytical development of the theory, also, it is 

probably the simplest case after that of Maxwellian molecules. The difference 

between the two models in this respect is, however, enormous, the rigid elastic 

spherical molecule requiring the infinity of terms /3r, yr in the velocity-distribution 

function, just as in the case of the most general molecular model. The comparative 

simplicity of the present model lies in the moderately tractable expressions for hrs, crs 

to which it leads. Apart from the methods of the present and my former paper, 

* Maxwell, ‘Collected Papers,’ ii, p. 42. His constant A2 equals it sin2 x • ada. in our notation. 
Jo 
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however, it has not been found possible in the past to obtain any close numerical 

accuracy in calculations based on this molecular model, the errors resulting in previous 

theories (although these have been carefully constructed and closely scrutinized) 

ranging from 10 to 50 per cent. {cf. § 11 (F)). 

It is readily seen# that in the present case 

(201) x=° (P>2«r) sin |-x = p/2a (p=2o) 

so that 

p dp — 2a-2 sin jx cos VX C^X = 0-2 sin x ^X = d cos X- 

As p ranges from 0 to 2<r, x ranges from 0 to 2-tt, and — cos x from —1 to 1. 

Hence {cf. (ill)) 

(202) fk {tij) = 2 (4&+ 1) CK<r2J ^{1-P2i. (cosx)} d cosx 

= 4 (4& +1) a-2 {2hm)~'l‘ly, 

since P 2k{f) d/j. = 0. Hence fk (ry) depends on k only as regards the numerical 
L 

factor (4&+1), and the present case is, analytically, the same as that considered in 

§ 8 (B) if we write {cf (183)) 

(203) ----- ^ = l, or n — co, and nAk = 4 (4& + l) a-2, 
n — 1 

We may therefore quote from the formulae of § 8 (B) as follows without further 

discussion :— 

(204) 

(205) 

(206) 

(207) 

|tti/2 (m + |)„,KM_2A. * = 2 (4&+1) rr2 (2hm) VT (m + 2) 

= 2 (4& +1) (m +1)! a-2 (2hm)~'12, 

Ko = K0il = 647r_I/2cr2 (2/wi)-1/a, K(il = K0il {t + 3)J{t+%)f 

p _ 225 {2hm) 
-L,0 2 5 6 i o 2 > 

7r "it v 

p   2 5 {2hm) ^ 
^0 61t 1L 2 > 

7T "<J V 

h = r = 9~r y kj ~t 3)t — o-rp / _r a 7 _ i \ 

t = o t\ p + fh 

15 
(208) ^„ = ^ = (-2)-^=-(-P(5?-Wr+1)(2r + 3)(2r+5). 

As in the case of molecules which are point centres of force varying inversely as 

* Cf. §13, p. 453, of my former paper, ‘Phil. Trans.,’ A, 211 (1911). 
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the nth power of the distance, the elements brs and crs, and the coefficients (3r and yn 

are pure numbers, independent of the temperature (i.e., of h). 

Molecules which are Rigid Elastic Spheres which Exert Attractive Forces. 

§ 9 (E) Experiments on the phenomena of actual gases, as, for example, on the 

variation of viscosity with temperature, indicate that none of the molecular models 

so far discussed in this chapter gives a really adequate representation of these 

phenomena. The best of all the simple models which have been used in the kinetic 

theory seems to be that considered by van der Waals and Sutherland, viz., a 

rigid elastic sphere surrounded by a weak field of attractive force. This agrees with 

the known fact of slight cohesion in gases. The effect of this field of force on the velocity- 

distribution function, or on viscosity and thermal conductivity, may be referred 

mainly to the deflections of molecular paths for which it is responsible indirectly, 

through the collisions which it induces between molecules which would otherwise 

pass one another without mutual inter-action, rather than to its direct effect in the 

absence of collisions. The latter effect will be expressly neglected in our calculations, 

which will therefore be inapplicable to vapours in which the cohesion is large enough 

to render this neglect invalid. 

A detailed account of the dynamics of collisions in these circumstances is given in 

§ 15 of my former paper, from which the following results are quoted. If the potential 

of the force between two molecules in contact be denoted by \-b2 (reckoning this 

potential as zero when the separation is infinite), the condition that a collision may 

take place is 

(209) p <po where p0 = 2<r^l+ 

(since the relative velocity, in my former paper written V0, is here denoted by 2CK). 

The angle x corresponding to such a collision is given by 

(210) . sin ix=p/Po- 

The angle x corresponding to larger values of p, which do not correspond to actual 

collisions, is given by (181) if the molecular forces obey the nth power law, but rve 

will here make no assumption on this point, as the deflections produced by the inter- 

molecular forces alone will be rejected after equation (211). Consequently 

(211) Ek{ry) = 2 (4£ + 1) <x2 (1 + b2fiCK2) CK + 2 (4/c + 1) CK {l-P2* (cos x)} p dp 
Jpa 

= 4 (4&+ 1) o-2 {2hm)-l^y(l+2hmb2/4,y2)+f2k (y) 

by analogy with (202) and (183). The latter term f2k (y) represents the negligible 
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deflecting effect of the forces alone, as above mentioned, and it will be omitted 

henceforward. Hence, corresponding to the equation (204) of § 9 (D), we have 

(212) \tv ,2 (t+•§-)( k — 2 (4&+ l) <r2 (2/m) F (t + 2) (1 + 

2 (4/)+l)(i+l)!o-2(2/m)-l/2( 1 + 

where we have written 

(213) 

Similarly we have 

(214) 

2 limb2 

4(«+l) 

3S 

S = 
b2m 

12R 

(215) 

(216) 

K, 

K0,1 = 64x-V(2Am)'V‘(l+ f-). 

. (<+4 A 
3 S' 

T? _ 2 2 5 (2hm)'k 1 
^0 — 256 1 

(* + DA H3T/’ 

25 (2hm)1'2 

C„ = 
TrVi/ 1+S/T’ 64 7rVi/ 1+S/T (5 4 i/2 2 

7r <t 

It will be seen later that S is the well-known “Sutherland’s constant” (§11 (F)). 

§ 10. Numerical Calculations for Particular Molecular Models. 

Rigid Elastic Spheres. 

§ 10 (A) In the last section we determined the complete expression for the velocity- 

distribution function for a gas composed of Maxwellian molecules. In the other cases 

there considered we must be content to make numerical approximations, which can, 

of course, be carried to any desired degree of accuracy. We shall consider in most 

detail the case of rigid elastic spherical molecules, for which we shall calculate 

brs and crs for 0 = r = 3, 0 = s = 3. These are chosen for the fullest treatment partly 

because of their simplicity, and partly as representing the limit between which, and 

the case of Maxwellian molecules, the molecules of actual gases appear to lie. 

In making such numerical approximations the following table of expanded formulae 

for BA (r, s) is useful:— 

Table I.—Expressions for B4 (r, s). 

B°(0,0) = 1 B1 (1,1) = %xy B2(2,2) = t85 xhf B3(3,3) = B<(4,4) = £B*V 

B°(l, 0) = x2-\-y2 Bx(2, l)=fxy(x2 + y2) B2(3,2)=fxy(x2 + y2) 

B3 (4, 3) = UxY {x2 + y2) B* (5, 4) = W*V (x2 + y2) 

B" (2, 0) = xl + JJLx2yJ + yl B1 (3, l) = 2xy (x4 + JSxbf + y4) 

B2 (4, 2) = i£-x2if (k4+^xV+2/4) 

B° (3, 0) = x6 + 7x4if + 7x2if + if B1 (4, 1) = fxy (x6 + ^-x4y2 + --§-x2y4 + y6) 

B2(5, 2) =^x2y2 (x6 + + \*-x2y4 + ty6). 

2 Y VOL. CCXYI.-A. 
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It is useful also to recall that If (r, s) — B* (s, r), and that B* (r, s) — 0 if 

r < k or s < k. 

By using these formulae in connection with (143), (144), (147) and (204)—(208) the 

elements brs, crs, have been calculated,* as above mentioned, and are given in the 

following expressions :— 

(217) m,) = 1 
15 41 741 

2.7 cy2 cp 
237.11 

15 269 5993 7571 

2.7 2272 233272 243.7.11 

41 5993 152537 1517873 
2232 233272 243472 25337211 

741 7571 1517873 50375871 

237.11 243.7.11 25337211 2h33721 l2 

(218) v (e„) = 1 
15 41 741 

2.7 2232 237.11 

15 877 6893 3889 

2.7 223.72 233272 243211 

41 6893 193329 6202777-f- 

2232 233272 343472 25347211 ‘ ' 

741 3889 6202777-f- 225937695 

237.11 243211 25347211 2-3472ll2 

or, writing out the elements in decimals to six places, 

(219) V (&„) = 1-000,000 1-071,429 1 *138,889 1-202,922 . . 

1-071,429 1-372,449 1-698,696 2-048,431 . . 

1-138,889 1-698,696 2-402,006 3-259,364 . . 

1-202,922 2-048,431 3-259,364 4-916,968 . . 

(220) V (c„) = rooo,ooo 1-071,429 1 '138,889 1-202,922 . . 

1-071,429 1-491,497 1-953,798 2M55,177 . . 

1 "138,889 1-953,798 3-044,359 4M39,790 . . 

1-202,922 2-455,177 4-439,790 7-350,929 . . 

* A considerable part of the computations of § 10 (A) have been made by Mr. J. Marshall, Scholar 

of Trinity College, Cambridge, who has thus been of much assistance in bringing the results into a 

useful form. 
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As explained in § 8 (E), however, the determinants V (Srsbrs) and V (Srscrt) derived 

from the above by successive differencing are much more useful and suitable for 

numerical calculation.# They may conveniently be written as follows, where the 

factor above each column or before each row is to be multiplied into all the elements 

of that column or row as written (e.g., the right-hand element on the second row of 

V (S„b„) is equal to -59 . {233.7.11.2.7}-1) 

1 (2.7)-1 (2a3a7)1 (2*3.7. ll)"1 

(221) ^ (KJ->rs) ~ 
1 1 1 -1 1 . . 

(2.7)-' 1 45 103 -59 . . 

(22327)-j -1 103 5657 6783 . . 

(233.7.11)-1 1 -59 6783 149749 . . 

(222) II V. 
■o

 

1 (2.7)-' (22327)-j (233.7.11)-1 

1 1 1 -1 1 . . 

(2.7)-' 1 2 0 5 
3 163 2 8 7 

3 

(2a3a7)_1 -1 163 11889 16798f . 

(233.7.11)-1 1 2 S 7 
3 16798f 329573-2T • • 

As we are throughout concerned with ratios of determinants, the above fractional 

expressions for the elements, from which the column-factors or row-factors can for 

many purposes be omitted, are the most suitable for calculation. The following 

values of the elements in decimal notation (to six places) are of interest, however, as 

showing the relative magnitudes of the various terms :— 

(223) V (Srsbrs) = 1‘000,000 0-071,429 ' -0-003,968 0-000,541 . . 

0-071,429 0*229,592 0-029,195 -0-002,280 . . 

-0-003,968 0-029,195 0-089,081 0-014,565 . . 

0-000,541 -0-002,280 0-014,565 0-043,849 . . 

(224) V (8„crt) = rooo,ooo 0-071,429 -0-003,968 0-000,541 . . 

0-071,429 0-348,639 0-046,202 -0-003,698 . . 

-0-003,968 0-046,202 0-187,216 0-036,072 . . 

0-000,541 -0-003,698 0-036,072 0-096,504 . . 

* This process of differencing renders the determinants much more convergent in appearance (cf.. (219] 

and (220) with (223) and (224), without really altering in the least their value or the value of any of the 
partial determinants formed by the first n rows and columns. 

2 Y 2 
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By taking these determinants with one, two, three, and four columns we get 

successive approximations to V, V' (cf. § 8 (E)), and to the actual coefficients /3 and y, 

as follows :— 

Table II.—Rigid Elastic Spheres. 

v (U- V (crs). 
v q V (8rs5rs) 

V (8rAs) ' 
v.. v (<WW) 

/r v (8rScrs)' 

1st approximation 
2nd 
3rd ,, 
4 th „ 

1-000,00 
0-224,49 
0-019,13 
0-000,79 

1-000,00 
0-343,54 
0-062,15 
0-005,54 

1-000,000 
1-022,727 
1-024,818 
1-025,134 

1-000,000 
1-014,851 
1-015,879 
1-016,065 

The determinants V (8rsbrs), V (orscrs) are obviously much more convergent in form 

than V (6rs), V (crs). Table II. shows that in each case these determinants converge 

rapidly to the value zero, but that the principal minors of the former determinants 

converge also to the same value in nearly constant ratios. These ratios, the 

successive approximations to which are given in the two last columns of Table II., 

are the quantities ~E/3r and 2yr which we require ; they evidently converge rapidly, 

the successive differences being as follows :—- 

Table III.—Rigid Elastic Spheres. 

2ft. Differences. Syr. Differences. 

1st approximation 1-000,00 
2273 

1-000,00 
1485 

2nd 1-022,73 
209 

1-014,85 
103 

3rd 1-024,82 
31 

1-015,88 
29 

4th 1 -025,13 1-016,07 

We may therefore conclude that, within a small fraction per cent., 2/3r and 2yr 

have the following values for rigid elastic spheres:— 

(225) 2ft = 1*026, 2yr= 1*016, 2ft/2yr = 1*010. 
0 0 0 0 

It should be noticed that even the second approximations to these quantities give 

results which are very nearly accurate, owing to the rapid diminution of the successive 

differences. 
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While we may thus obtain a close approximation to the values of the series 2/3r 

and 2yr with little difficulty, the approximations to the values of the individual 

coefficients /3 and y converge by no means quickly, as the following table 

shows :— 

Table IV.—Rigid Elastic Spheres. 

1st approximation. 2nd approximation. 3rd approximation. 4th approximation. 

ho 1-000,0 1-340,9 1-520,2 1-623,0 
hi — - 0-318,2 -0-652,1 -0-943,2 
hi — 0-156,7 0-432,8 
hi — — -0-087,5 

yo 1-000,0 1-222,8 1-309,4 1-366,3 
7i — - 0-207,9 -0-368,8 -0-526,3 
y2 — — 0-075,4 0-221,8 
73 

“ 

— -0-045,7 

Evidently the fts and y’s alternate in sign, and successive terms do not seem to 

diminish quickly, at any rate near the beginning. To obtain an accurate estimate 

of the real values of these coefficients it is clearly necessary to carry the approxi¬ 

mation much further than we have done, but for our purpose this is not required. 

Molecules which are Point Centres of Force varying as r n. 

§ 10 (B) The next simplest case, analytically, to that which has just been discussed 

is the case of molecules which are point centres of force varying inversely as the 

nth power of the distance. By comparison of (186) and (205), in conjunction with 

the general expressions for brs and crs, it is easy to see that the difference between 

the values of brs or crs in the two cases consists of a power series in —-—, the constant 
n— 1 

term of which is zero, while the term of highest order is (n— l)-(r+s). Numerically 

the difference is small, as may easily be verified in any particular case ; it appears 

to be of constant sign, brs and crs being greatest for molecules which are rigid elastic 

spheres. The behaviour of the determinants V (brs), V (c„) or V (Srsbrs), V (§rscrs) is 

similar in the two cases, the convergence being slightly the more rapid in the present 

instance. Since for rigid elastic spheres the second approximation to 2/3r and 2yr 

proved so satisfactory, we shall be content with a second approximation only, for 

molecules which are point centres of force; this very materially lightens the labour 
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of numerical calculation. The following are the expressions found for the deter¬ 

minants V (Srsbrs), V (Srscrs) as far as regards the first, four elements :— 

(226) V(J„6r.) = 

fj__7_l 
114 2 (n—l)\ 

2(n-l) 

f 45_4 4 1 

1196 49(n-l) + 49(n-l)2J 

^ (<1,0 = 1 

f 1 7 ) 
114 2(n-l)J 

f 1 7 \ 
114 2 (n— l)j 

(205 4 4 1 

1588 49 (71—1) + 49(n-l)2J 

When n is made infinite these become identical with (221), (222); it is interesting 

to notice that the additional terms are the same in the two determinants, though 

whether this is true for other values of r and s is not clear. 

The first approximations to 2/3,., 2yr are, of course, unity ; the second are found 

to be approximately as follows :—- 

(227) 

16 n —2 

45 45 (n— 1 )2 

44 2 1 

11 n-l 

1 48 n — 2 

~ 205 205 (n-l)2 

= 202 " 

101 n-l 

From §9 (C), (196), we know that when n = 5 the values of 2/3r and 2yr are 
0 0 

unity, and this is also true of any approximation to their values made in the present 

manner. From § 10 (A), however, we know that for n — co the second approxi¬ 

mations are slightly too small, by 0‘003 and O'OOl very nearly. In the following 

table, therefore, which gives the approximate values of 2and 2yr for various 

values of n lying between 5 and oo, the results obtained from (227) have been 

increased by O'OOl, 0'002, or 0'003, as seemed most appropriate in each case. 

Table Y.—Molecules which are Point Centres of Force varying as r n. 

Maxwell’s 
case, 

n = 5. 
n = 9. n = 15. n = 25. 

n = co, 

rigid elastic 
spheres. 

O
 

M
 8 

A
1 

1 1-007 1-013 1-018 1-026 

CO 

r 
0 

1 1-004 1-007 1-011 1-016 

CO CO 

Sc = 2/3,./27, 
0 0 

1 1-003 1-006 1-007 1-010 
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Rigid Elastic Attracting Spherical Molecules. 

§ 10 (C) Considering next the case of rigid elastic spherical molecules which exert 

attractive forces, as in § 9 (E), we shall neglect the effect of the attractions in 

producing deflections without actual collisions, and, as in § 10 (B), we shall content 

ourselves with a second approximation to 2/3r and 2yr. The difference between this 

case and that of rigid elastic spheres without attraction is small. The expressions 

for V (Srsbrs) V (Srscrs), as far as regards the first four elements, are as follows :— 

(228) V(3„b„) = 

i 
14 

1 + S/T 

i 
1 4 

4 5 
TITS 

1-S/T1 

1 + S/TJ 

1+-IS/T) 

1+S/T j 

^ ( h/V r-s' ) = LlI 
14 1 + S/TJ 

, 1-S/T 
1+ l+S/T 

20 r> i+msm 
588 1 + S/T J 

When S = 0, i.e., when there is no attraction, these reduce to (221), (223). 

The second approximations to 2/3,. and 2yr are hence found to be as follows 

2 A-= 
45 (l +fS/T) ■ 

45 (1 +fS/T)—(l—S/T)2 (1+S/T)-1 ’ appi°Ximate y’ 

-205(l+Mt.S/T)- approximately. 

(229) 

(230) 2y,. - 205 (1+i^|S/T)-3(1-S/T)8(1+S/T) 

Since S/T is never negative, it is clear from (229), (230) that the second approxi¬ 

mations to 2/3r and 2yr are never less than unity. Their values, without any 

estimated correction for the error of approximation, are given in the following table, 

for various values of S/T. The correction as estimated is appended as a suffix, and 

is to be added to the last digit of the corresponding number. 

Table VI.—Rigid Elastic Attracting Spherical Molecules. 

Low temperatures. Moderate temperatures. High temperatures. 

s 

T ‘ 
00. 5. 

' 
4. * 3. 2. 1. 0-7. 0-4. 0-2. o-l. j 0. ; 

CD 

2/3r 
0 

1-038 1 * 0152 1•0122 l-008i 1 • 0040 1 
, 

l-001o 1 ’ 005j 1-Olio 1-016.2 l-023s 

CO 
2yr- 
0 

1-016 1-009! 1-007i l-005i 1•0020 1 1-OOIq 1"0040 l-009i 1-013i 1■015i 

OO CD 

Sa=S/3r/2y,. 
0 0 

1-022 1-000! l-005i 1•0030 1 ‘ 0020. 1 1-OOOq i-ooii l-002i l-003i l-008o 
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In the case of the actual gases for which S has been determined, it has an extreme 

range from about 50 to 250, while the range of absolute temperature over which 

experiments are usually made is from about 50° C. to 500° C. Thus the limits 5 and A 

are rather extreme values of S/T, but from the above table it appears that the variation 

in 2/3„ 2yr or their quotient hardly exceeds 1 per cent, over this range. The variation 

is especially slow in the neighbourhood of S/T = 1. 

§11. Viscosity and Thermal Conduction. 

We now proceed to apply the expression for the velocity-distribution function 

(§ 8 (B)) to the determination of the coefficients of viscosity and thermal conduction. 

We shall first obtain general formulae for these coefficients, true for any monatomic 

gas, afterwards considering special molecular models in conjunction with the results 

of §§ 9, 10. 

The Coefficient of Viscosity. 

§ 11 (A) The system of pressures at any point of a gas is given by the equation 

(231) Txx = P\f, P,y = pUV, &c. 

By means of (5) and the velocity-distribution function (142), we find that 

(232) p„ = pi? = + 

= ^~i£^iCnG°^yr' 

(233) 

Since, by (74), 

we have 

P — _ 1 
xy 30hm "12 

CioC02y,. 

Cxi + C22+C33 — 0, 

(234) + P +P : 1 yy 1 z 3 p 
2hm = P> 

p being the hydrostatic pressure as usually defined. 

By comparing (232), (233) with the equations giving the system of pressures in a 

viscous fluid having a coefficient of viscosity p, viz., with 

(235) P _ ~ 2/o duo dv0 dw0 
xx 1 3M' dx dy dz 

P 

(236) P = 
xy -p 

dv0 du, 

dx dy 
= ~amc12 
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(remembering the meaning of cn, c12, &c., as defined in (72)), it appears that the two 

are identical if we write 

(237) M = 1 
10 

hm 
C„2yr. 

Hence, according to the kinetic theory, a gas behaves like an ordinary viscous 

fluid having a coefficient of viscosity defined in terms of the molecular data by (237). 

By (170), (173) we have 
f 

(238) C, = —, 
7TVKy 

whence, also, 

(239) M = 
_5_ 

2 7r JlK0 

oo 

0 

As we have seen in § 8 (B), k0 and 2yr are functions of the temperature (or h) only, 
0 

and v does not appear at all in the formula for //. Hence, within the limits of 

applicability of our theory (cf § 2), the coefficient of viscosity of a gas is independent 

of its density, varying only with the temperature. The law of this variation depends 

on the law of inter-action between two molecules at encounter, this being involved 

through ff-ry). As this function has remained unspecified, the expression in (237) 

is perfectly general and valid for any nearly perfect monatomic gas. 

The Equation of Energy for a Simple Monatomic Gas. 

§ 11 (B) In the discussion of the equation of transfer in § 3, we consistently neglected 

such second order quantities as products of differentials, or differentials of small 

quantities like UV, C2—3U2, and so on. In this way we have obtained an expression 

for the velocity-distribution function which is correct to the first order. By means 

of this function we can now determine the values of UV, C2 —3U2, UO2, and similar 

expressions which are of the first order of small quantities, and by substitution in the 

equation of transfer obtain this in a form accurate to the second order. This we shall 

do for the special case Q = (u)2 + (v)2 + (w)2, in order to get a second approximation to 

the equation of energy. 

From the velocity-distribution function, using the formula (237) for the coefficient 

of viscosity, we have 

(240) C2 = 3 (/mi)-1 = SUrT/m. 

(241) 3U2 —C2 - -2 ftp) (2^ 

(242) =-EM (H+!§»). 

2 z VOL. OCXV1.-A. 
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In finding l)C2 it is convenient to write 

(243) ‘ f= 
0 / 0 

and to recall (cf. (170)) that 

(244) B0 = fC0. 

Thus we have 

(245) UCS = — |B0 (2hm)~a| ^ ^ 

where we have eliminated /3_x by means of (148). 

Again, if Q = (u)2+(v)2 + (w)2, we have 

R 0T 

m dx ’ 

Q — u2 + v2-f w2 + 2 (muU + v0V + iv^N) + C , 

Q = u2 + v 2 + iv 2 -\-G2, 

(u) Q = u0 (u2 + v2 + w2) + u0G2 + 2 (moL|2+uUV + w0UW) + UC2. 

Hence, putting u0 = v0 = wu — 0 except in differential coefficients, we have 

|(,Q) = 3^ ' 
_ 3 3i/ _ 3 / 1 \ 

at 1,2/wn i 2hrn dt+ ' dt\2hmj 

= —3 
RvT fdun , , 0wo\ „ Rb 3T 

2^_(b(m)Q) - b2(C2 + 2U 

m \dx + 3?/ ' 02 

0W, 

+ 3 

_ _ 
" 1 2UV + 2UW 

m dx ' 

div 

dx dx 

5C3 A +«3UJ-C2attl 
0X 

o + 2uv hffi + 2UW ~4 +2 4 (bUC2) 
da: dx ox J dx 

5 RbT fdu„ dv0 dw0 

m \dx dy dz j 

/x j A -y (du„ \ 4 / -y M-n \ 9 

- ^4 
P dx 

2X 

0ltnV2 

0X s(tr+ ©}+2IXuci)' 

m 
0Q 

. \0 (w) 
= 0. 

Also, since no energy is gained or lost in molecular encounters, 
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The equation of transfer becomes, consequently, after a little reduction, 

(246) 
3T d f f 3T\ 2 T f du0 3Vn 3w, 

p — = —) -sM l — + 0^- + dt dx \ dx dx dz 

+ 3 
2_ ) 9 v / _2 / y \ _■y 

3 dll' 1 \ 032 / 3 \ dx ) 

3% 3 w, 

dz dy 

which is the equation of energy. 

The Thermal Conductivity of a Gas. 

§ 11 (C) In the equation of energy which we have just obtained, the second term 

on the right-hand side represents the change of heat per unit volume due to the 

variation in density at the point considered, while the third term may be proved 

equal to the heat produced by internal friction. The first term, by comparison with 

Fourier’s equation of conduction of heat (3- being the thermal conductivity and C„ the 

specific heat at constant volume), i.e., with 

dt 

3T 

dx V dx 

is seen to represent the change of heat by conduction, and to indicate that the 

coefficient of thermal conductivity of a gas is given by 

(247) c„. 
The value of f in this well-known formula is, for a general monatomic gas, given by 

(243), i.e., 

(248) /= lm/2yr 

In general f is a function of the temperature only. 

Formula for p and 3- for Particular Molecular Models. 

§ 11 (D) By substitution of the values of C0 and 2/3r/2yr given in §§ 9, 10, for the 

particular molecular models there discussed, we obtain the following special cases of 

(237) and (248) 

(249) Ptigid elastic spheres, 

,l = 1*016 bm (h 
64tt V \m 

(250) Attracting spheres, 

T f= f. 1-010 = 2-525, 

/.= (l+O-^^-T'’'1 
5 m 

647r ^a-2 m 1 + S/T 

2 z 2 

J — i (1 + <k)> 
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(251) Centres of force r~n, 

M (1 + 0 
7 5m 

8AA,r(4-_^) 
n+3 

2te-l) f — f (i+0- 

In these formulae ea and ec denote the values of 2yr in the cases respectively when 
0 

the molecules are attracting spheres and centres of force, and Sa and Sc similarly denote 

S/3r/2yr; their values are given in Tables V. and VI., and in no case differ from 

unity by more than two per cent. 

The mode of variation of /x with the temperature affords a guide to the law of inter¬ 

action between the molecules of actual gases. By comparison with experimental 

determinations of /x at various temperatures it is thus found that of the above models 

the one which most closely represents the behaviour of actual molecules in this respect, 

at ordinary temperatures, is the second, i.e., a rigid elastic attracting sphere.* 

Comparison of the present formula for /x and S with those of my previous paper. 

§ 11 (E) The general formulae (237) and (248) for viscosity and thermal conductivity 
00 00 GO 

agree with those of my former paper,! except that the factors 2/3r and 2^r/2yr were 
0 0 0 

there omitted. This was in consequence of the assumption on which the analysis of 

that investigation was based, that F (U, V, W) is sufficiently represented by the 

terms of the first three degrees in U, V, W. We have seen in § 9 (C) that this is true 

for a gas composed of Maxwellian molecules, but not otherwise. It seems of interest 

to consider why the neglect of all the coefficients /3r, yr after r — 0 led to results of 

such accuracy ; for the errors arising from the assumption are represented in the 

special cases (249)-(25l) of (237) and (248) by the factors 1'016, 1‘010, l + ea, l+<b, 

1 + ec, 1 + Sc, so that the necessary corrections to my previous formulae do not exceed one 

or two per cent. Enskog, on the other hand, after deducing formulae similar to (237), 

(248), but without evaluating the coefficients /3r, yr, made a first approximation by 

neglect of all these coefficients after r — 0, and arrived at the result f — 5 for rigid 

elastic spheres. J This was due to the fact that such a use of (237), (248), as they 

stand, involves not only the neglect of all the coefficients after r — 0, but also requires an 

assumption as to the values of (30, y0 themselves, as, for instance, that they are approxi¬ 

mately the same as for Maxwellian molecules ; a comparison of (196) with Table IV. 

(p. 331) will show that this is far from being the case. 

It may readily be seen, however, that the method of my former paper required no 

* At very low temperatures, however, the nth power centre of force is the molecular model which gives 

by far the best representation of the relation between /x and T, in the case of helium; cf. Kamerlingh 

Onnes and Sophus Weber, ‘Comm. Phys. Lab. Leyden,’ 134b, p. 18, or Jeans’ ‘Dynamical Theory 

of Gases,’ 2nd ed., §§ 405, 407. 

f Chapman, ‘Phil. Trans.,’ A, vol. 211, p. 433, et seq. 

1 Enskog, ‘Phys. Zeit.,’ XII., p. 58, 1911. 
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hypothesis as to the values of /30, y0, which were determined from AUC2and AU2 as in 

this paper ; in effect, the later coefficients were neglected, while /3} and y0 were obtained 

from the equations (138), (139) corresponding to s — 0. Viewed otherwise, my 
co 

previous formulae were equivalent to (237), (248) divided respectively by 2/cryr//c0 

and 2/c Br/: *r y-r Thus the neglected factors in /u. and f were 

2, ■Ko7r 

and 
2/3r 2/c,.yr 

o . o_ 

2. Kryr 2yr 2 Krfir 

0 0 

which evidently reduce to unity if we neglect all the [3'0 and y, after r — 0, without 

any assumption as to the values of /% and y0. 

One of the main results of the former paper was that f = -| for all monatomic gases, 

and not only for those composed of Maxwellian molecules. This is now seen to require 

modification, but the values here found for f in the special cases which have been 

considered in §§ 9, 10 show that the correction needed to make the equation accurate 

is very small; it appears probable that for all likely molecular models f is very 

slightly greater than 2‘5, and that it is nearly but not quite constant with change 

of temperature (except when the molecules are elastic spheres or centres of force 

proportional to r~n). 

Comparison of the Formula for n and b tvith the Results of other Theories. 

§ 11 (F) The only kinetic theory of viscosity a,nd thermal conductivity which could 

hitherto lay claim to numerical accuracy (within the limits imposed by the initial 

postulates) is? Maxwell’s theory* of a gas composed of molecules of the kind dealt 

with in § 9 (C). The results of his theory are special cases of the general formulae of 

this paper. 

The theory of a gas composed of molecules which are point centres of force varying 

inversely as the nth power of the distance had not been discussed in detail, previous 

to my own former paper. Rayleigh, t however, from considerations of dimensions 

alone, had deduced the law of variation of viscosity with temperature, and the same 

argument would also show that for such a gas f is an absolute constant (for any given 

value of n). Nothing was known as to the value of this constant, or of the numerical 

coefficient in the expression for /a, and it is a surprising result, which could hardly 

have been guessed a priori, that as n ranges from 5 to oo the value of f should vary 

only from 2'500 to 2'525 approximately. 

The theory for molecules which are rigid elastic spheres exerting attractive forces 

was equally undeveloped. Sutherland £ had taken an important step, however, in 

* Maxwell, ‘Collected Papers,’ vol. II., p. 23. 

t Rayleigh, ‘Roy. Soc. Proc.,’ vol. 6, p. 68, 1900. 

X Sutherland, ‘Phil. Mag.,’ (5), 31, 1893. 
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deducing the correction to the law connecting p and T (i.e., p oc T1/-2) for molecules 

which are rigid elastic spheres without attraction ; he showed, without attempting 

numerical accuracy, but by a method which is correct in its main outlines, that the 

attractive forces necessitate an additional factor (l+S/T)-1, as in (249). The law 

p cc T'/2 (l +S/T)-1 is more successful than any other in representing the observed 

relation between p and T over a considerable range of temperature, and S is deservedly 

known as Sutherland’s constant. 

The theory of a gas composed of molecules which are rigid elastic spheres, which 

was taken by Sutherland as the basis of his modified formulae, has been developed 

along lines different from those of this paper by Clausius, Maxwell, Boltzmann, 

Meyer, Stefan, Jeans, and others. Their method was less analytical than the 

present one, and while it gave correctly the general relationships between p, 3-, p, p, 

and T, its results do not possess numerical precision. Jeans* notably improved 

certain of the formulae due to earlier authors by taking into account the tendency 

of a molecule to persist, after a collision, in the general direction of its original course. 

For this reason his expression for the viscosity, viz., 

(252) 
Q'88 m /Rt\iy* 
4 x tt12 a-3\m ) 

(Jeans) 

approaches more nearly to the correct expression (249) than does the formula of any 

other authorf. A comparison of (249) with (252) indicates that the latter is still too 

small by 12 per cent.; the error of the- original formula, without Jeans’ correction, 

was 30 per cent. 

The numerical inaccuracy of the earlier prevailing theory of conductivity, which 

was due to Meyer }, was very great. Its result was generally given as 

S- = fpCv where f — 1‘6027, 

but Prof. L. V. King, of McGill University, has pointed out to me by letter that 

Meyer’s argument really leads to the result 

/= 1-4161, 

a numerical mistake having crept into his work which had not previously been 

detected. The correct value off for rigid elastic spheres is given in (249), i.e., 

f = 2A25. 

This large error in Meyer’s theory indicates the difficulty of arriving at numeri¬ 

cally accurate formulae by the older “ mean free path ” method, and diminishes 

* Cf. Jeans’ ‘ Dynamical Theory of Gases.’ 

t Apart from that in my former paper, which was 1 • 6 per cent, too small. 

| Meyer’s ‘ Kinetic Theory of Gases,’ 2nd English edition, chap. IX. 
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confidence in other parts of that theory where detection of error is less easy. Until 

recently Meyer’s value of f received support from experimental data for diatomic 

gases, to which it does not really apply ; only lately have data for monatomic gases 

been obtained, which, as we shall see, give values of/nearly equal to •§. 

§ 12. Comparison of the Theory with Experimental Data. 

The Variation of Viscosity with Pressure. 

§ 12 (A) The main objects of a comparison of a mathematical theory with experi¬ 

mental data are either to test whether the postulates underlying the theory are valid, or 

whether the theory is itself mathematically correct. The present theory being exact, 

within certain defined limits, our purpose in this chapter is to consider how far the 

hypotheses underlying the analysis are well founded. The general validity of the 

foundations of the kinetic theory is attested in many ways, one of the most striking 

being the independence of viscosity and pressure in a gas. This law, when first 

discovered by Maxwell, seemed so improbable that it gave a great stimulus to 

experimental research on gases, and the constancy of fx, when T is kept constant, has 

been verified over a range of pressure extending from a few millimetres of mercury up 

to more than one atmosphere. Warburg and yon Babo have found that, in the case 

of carbon dioxidjs, the law begins to fail when the pressure becomes so great as 30 to 

120 atmospheres, fx rising appreciably. In very rarefied gases, on the other hand, the 

viscosity falls below the value appropriate to the existing temperature. This must be 

referred to the failure of the postulates of our theory to represent the facts in these 

extreme cases, the molecules becoming too few for our statistical method to apply, on 

the one hand, while on the other our assumption that the molecular paths are 

rectilinear for the major part of the time, and our neglect of multiple encounters, 

become illegitimate. 

The Variation of Viscosity with Temperature 

§ 12 (B) Over a wide range of pressure and temperature, undoubtedly, the general 

postulates of our theory are true for actual gases. We cannot discover directly, 

however, the nature of the molecules or their mode of collision, and it is important, 

therefore, to examine which molecular model yields formulas most in accordance with 

experimental data. For this purpose we naturally choose those properties which are 

most affected by the nature of the molecule; the chief of these is the variation of 

viscosity with temperature. Maxwell abandoned his theory of a gas composed of 

rigid elastic spherical molecules because it led to the relation p. cc T/ while his experi¬ 

ments gave the result fx cc T. This caused him to develop the theory of a Maxwellian 

gas (§ 9 (C)), for which fx oc T, but later experimenters have failed to confirm this law, 

and we must conclude that the molecules of actual gases behave during encounters 

neither like elastic spheres nor like Maxwellian molecules. The observed relation 

* The reader may be referred with advantage to the discussion of this point by Jeans in' the second 

edition of his 1 Dynamical Theory of Gases,’ §§ 399-407. 
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between p and T agrees much more closely with Sutherland’s law p Tl/s(l+S/T)-1 

than with any other; for example, Schmitt* has found that the law is valid for 

hydrogen and helium from — G0° C. to 185° C., and Barus has shown that it holds 

good for air over a wide range of temperature. The law has not been tested, for the 

former gases, above 185° C. 

This seems to indicate that for the kinetic theory of gases at ordinary temperatures 

the best molecular model is an attracting sphere, and it is interesting to notice that 

this model is the one used by van der Waals with such success in deducing his 

famous law. Further confirmation is supplied by the excellent agreement between 

the values of the molecular diameters deduced on this hypothesis from the constant 

b of van der Waals’ law and from the viscosity by means of my formula (250)— 

cf. § 12 (F). 

At low temperatures Schmitt*, BESTELMEYERf, Vogel* and others have shown 

that the observed values of p are greater than those predicted by Sutherland’s 

law. This may be compared with the rise in the value of p when the pressure is 

greatly increased, both effects probably having a like cause ; in these states, when the 

mean free path of the molecule is much reduced, the molecular paths may cease to be 

approximately rectilinear between collisions, and multiple encounters will grow in 

importance. Since our theory rules out. these contingencies, its results cease to be 

applicable, and a modification of the theory and its postulates is necessary if a proper 

account of these phenomena is to be given. In regard to this, one point which should be 

noticed is that in § 9 (E) a term f2k (y) in fk (rij) was neglected (cf. (211)) which, if 

retained, would cause the law connecting p and T to take the form 

rp7a 

'“*1+(S/T)+/(T) 

where f (T) can be expanded in the form AT-2 + BT~3 + .... This term is due to the 

effect of the attractive forces in producing deflections without the occurrence of 

collisions, and is probably always small; but it may readily be seen that it is always 

positive, and that this correction would lead to a diminution in the theoretical value 

of p at low temperatures. Clearly, therefore, the observed discrepancies cannot be 

attributed to our neglect of this small quantity.§ 

* Schmitt, ‘Ann. d. Phys.,’ 30, p. 399, 1909. 

t Bestelmeyer, ‘Munich dissertation,’ 1903. 

\ Vogel, ‘Berlin dissertation,’ 1914, where full references, and an interesting discussion of low 

temperature work on viscosity, are given. 

§ Vogel, in his dissertation, suggests as possible causes of the failure of the theory to represent the 

observed variation of y with T at low temperatures (i.) a failure of the ordinary mechanics, such as is 

contemplated in Planck’s theory of quanta; (ii.) that the attracting sphere model no longer represents 

the molecule; (iii.) that 1+S/T should be replaced (according to my suggestion in ‘Phil. Trans.,’ A, 

vol. 211, p. 474, 1912) by 1 + (S/T) ± (C'/T)2. By the latter means a better accordance with observation 

is obtained, but the new term has the minus sign, and is therefore illegitimate. 
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The Thermal Conductivity of Monatomic Gases. 

§ 12 (C) It is convenient to discuss the thermal conductivity of gases in terms of the 

constant f in the formula 3- = fpC„, as this eliminates the necessity for a separate 

discussion of the dependence of 3- on pressure and temperature ; this is parallel with 

that of p, andjf is nearly or quite independent of pressure and temperature in normal 

conditions. As we have seen in § 11 (F), the value of f has been a matter of some 

uncertainty ; so long as its value for rigid elastic spheres was supposed to be 1'6027, 

while for Maxwellian molecules it was known to be f, it seemed to offer a means of 

testing the suitability of different molecular models. On the ground of the 

discrepancy between the theoretical and observed relation between p and T, 

Maxwellian molecules were known to be unsatisfactory representations of actual 

molecules. Until about 1900 no reliable determinations of /had been made for mona¬ 

tomic gases, and those found for diatomic gases agreed fairly well with Meyer’s value 

of f (i.e., 1'6027 or, more accurately, 1'416) ; at the time this was regarded as a 

confirmation of the rigid elastic spherical model of the molecule, and as indicating 

that the internal molecular energy, which is not taken into account in these theories of 

a monatomic gas, is transmitted at the same rate as the translational energy. When, 

in 1902, Schwarze obtained the values of f for argon and helium, and found them 

nearly equal to f, the conclusion to be drawn was not obvious. It certainly 

contradicted Meyer’s theory, but left the question open as to whether the analysis, or 

the assumption of the rigid elastic spherical model, was at fault; also if f — -§ indicated 

that the molecules are Maxwellian, the failure of the corresponding law connecting 

p and T remained unexplained. It should be remembered, moreover, that the law 

p oc T’/2 for rigid elastic spherical molecules is equally contradictory to experiment. 

These difficulties were removed by the theorem of my former paper, according to 

which f is an invariable constant -§ for all monatomic molecules. This is now seen to 

be incorrect as a general theorem, but the deviations found for the various particular 

molecular models discussed leaves little room for doubt that f is very nearly equal to 

-4 in the case of all likely models. The fact simply is, therefore, that f is very 

unsuitable as a means of discrimination between different models, and Schwarze’s 

observations indicate some mathematical fallacy in Meyer’s theory, without supporting 

any particular molecular model. The observed values of f are hardly known with 

sufficient accuracy to enable any conclusion to be drawn from a slight divergence 

from the value ■§, within the limits prescribed in (249) to (251). They are important, 

however, as confirming the general validity of the kinetic theory, apart from any 

hypothesis as to the nature of the molecules. 

The following table contains all the available data concerning the value of / for 

monatomic gases. Only very recently has the conductivity of neon been deter¬ 

mined, owing to the scarcity of the gas ; for krypton and xenon its value is still 

unknown. 

3 A VOL. CCXYI.-A. 
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Table VII.—Values of f for Monatomic Gases. 

Gas. Absolute temperature. /• Authority. 

Helium °c- r 273 \ 
2-51 
2-40 

Schwarze* 

Eucken! 

81 2 • 23 Eucken 

21 2-02 Eucken 

Argon . 273 | 
2-50 
2-49 

Schwarze 

Eucken 

91 . 2-57 Eucken 

Neon . 283 2-50 DornJ 

These results for argon and neon and, to a less extent, for helium at normal tempe¬ 

ratures agree very well with the theoretical value of /, especially since the combined 

experimental errors in their determination may easily exceed one per cent, at ordinary 

temperatures, and much more at low temperatures. 

The diminution in the value of f for helium at low temperatures, if confirmed by 

further experiment, is very interesting and important. Helium is peculiar at low 

temperatures also in the striking divergence of its viscosity from Sutherland’s law. 

Eucken suggests as the explanation of the former phenomenon a partial failure of 

interchange of molecular energy at collision, but (cf. Table VI. of his paper) down to 

81 C., at any rate, the value of Ct, for helium remains constant and appropriate To a gas 

which possesses only translational energy. A failure in interchange of translational 

energy would contradict the ordinary dynamical laws, and it is certainly desirable to 

seek some other explanation, if this be at all possible. 

The alternatives are not numerous, and will be examined in turn. We may ride 

out a numerical error in the theory, of more than one per cent., as being quite 

improbable ; but though all the molecular models discussed in this paper lead to 

values of f equal to or slightly greater than 2'5, it is conceivable that for some 

peculiar model f may have rather different values and a wider temperature range. I 

think this is unlikely, and that it is probably possible to prove that f always 

exceeds 2‘5, but this is only a speculation ; helium agrees so well at high tempera¬ 

tures, however, with Sutherland’s law connecting ^ and T, that its molecules can 

hardly be supposed so different in behaviour from rigid elastic attracting spheres as 

to make,/theoretically equal to 2'0 at low temperatures. 

Again, molecular aggregation might seem to afford an explanation, since if part of 

the gas were polyatomic through clustering of the molecules, the value of /would 

* Schwarze, ‘Halle dissertation, Ann. d. Plq^s.,’ (4), 11, p. 303, 1903. 

f Eucken, ‘Phys. Zeit.,’ 14, p. 324, 1913, Tables 3, 6. Eucken (footnote 4 to p. 328) states that 

Schwarze’s value of / for helium is too large owing to a miscalculation in determining C„. 

\ This result was kindly communicated to me by Prof. Dorn, of Halle, as an extract from ‘ Mitt, d, 

Naturf, Ges. z. Plalle,’ 4, 1914. 
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probably lie between 2'5 and the lower values characteristic of polyatomic gases. In 

this case, however, the value of C„, the specific heat at constant volume, should rise 

to correspond with the internal energy of such molecules ; as the experiments indicate 

a constant value of C„, the suggestion must be abandoned. 

The only possible remaining hypothesis seems to be to attribute the fall in / to the 

neglect of multiple collisions between molecules, including also the effect of the 

attractive forces (in Sutherland’s case) in producing deflections without collisions; 

at low temperatures the molecules may be too close together for these postulates of 

our theory to continue valid. If we determine 3 for helium from the formula 2'5p Cv, 

using the value of p calculated from Sutherland’s formula (which is less than the 

observed value at low temperatures, as we have seen), the result is less than that 

observed at low temperatures. Hence both 3 and p diminish with temperature less than 

is predicted by Sutherland’s law, the divergence being greater for p than for 3, so that 

/ also diminishes. We cannot enter here into a test, by calculation, of this suggested 

hypothesis, but some confirmation might be sought experimentally by examining 

whether /is less than 2'5 for helium at normal temperatures but under considerably 

increased pressure. The latter would bring the molecules closer together in the same 

way as would a diminution of temperature, and this is all that our suggestion requires. 

It is known that over a large range of pressure p and 3 are constant, but that at 

high pressures p increases ; the independence of 3 on pressure has usually been tested 

by diminishing the normal pressures/ and experiments under increased pressure 

might throw valuable light on the present phenomenon. Gases other than helium 

may be expected to behave similarly, though perhaps only with lower temperatures 

or higher pressures. 

§ 12 (D) The case of mercury vapour may also be mentioned, as it was the first 

monatomic gas for which/ was determined. Koch! determined p for mercury vapour 

at 203° C., 273° C., and 380° C., while Schleiermacher| determined 3 at 203° C. 

These data, together witli the theoretically calculated value of C„, led to/ = 3'15. 

Meyer and others have raised objections to the determinations of p (a) because the 

three values show an improbable amount of variation with temperature, and 

(h) because of the vitiating effect of condensed mercury on the walls of the capillary 

tube used in the experiments. Vogel§ has made are-calculation of‘ p for mercury from 

an interesting formula which he gives, and finds that at 573' C. absolute|| p should 

equal 593'10-7; this, combined with Schleiermacher’s result, reduces / to 2‘80. But 

*’it is desirable that more accurate experiments should be made in order that a 

thoroughly reliable value of / may be obtained. 

* Eucken, ‘Phys. Zeit.,’ 12, p. 1103, 1911, Table 2. 

t Koch, 1 Wied. Ann.,’ 19, p. 857 (1883). 

\ SCHLEIERMACHER, ‘Wied. Ann.,’ 36, p. 346 (1889). 

§ Vogel, ‘Berlin dissertation,’ p. 57, 1914. 

|| So given by Vogel; it may be a misprint for 473° C. 

3 A 2 
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The Thermal Conductivity of Polyatomic Gases at Low Temperatures. 

§ 12 (E) The formula 3- —fu C„ is true for polyatomic as well as for monatomic gases, 

f being independent of pressure and temperature over a considerable range. Under 

normal conditions, however, its value is 2‘0 or less, being greatest for diatomic gases 

and diminishing down to about 1'5 for complex molecules. Eucken# has made the 

interesting and important discovery, however, that diatomic gases show an increase 

in f at low temperatures, the conductivity varying with temperature in the sense 

opposite to that observed in the case of helium. This is apparent, to a slight extent, 

in nitrogen, but is most striking in the case of hydrogen. It is found that, simul¬ 

taneously with the rise in f the specific heat C„ progressively falls in value until at 

21° C. absolute its amount is that appropriate to a monatomic gas of the same molecular 

weight. At these low temperatures the rotatory motion of the molecules seems to 

fail, for some reason as yet undiscovered, so that the gas behaves in certain respects 

as if its molecules were of the spherically symmetrical type discussed in this paper. 

It is highly interesting and significant that this approach to monatomicity is 

accompanied by an upward tendency of f towards the value (2‘5 approximately) 

which is appropriate to monatomic gases. The same phenomenon may be expected in 

the case of the other diatomic gases, at lower temperatures corresponding to their 

lower boiling points. In the following tabled the results for hydrogen alone are 

given ; the number n in the third column represents the number of “ degrees of 

freedom ” of the molecule, as calculated from the observed values of C„. 

Values for f for Hydrogen. 

Absolute 
temperature. /• n. 

° C. 
273 1-96 4-80 
195 2-09 4-41 

81 2-25 3-16 
21 2-37 2-98 

The Diameter of the Molecide. 

§ 12 (F) In my former paper tables were given showing the values of the molecular 

diameters for several gases, calculated on the hypothesis that the molecules are rigid 

spheres, with or without attractive force. These require a small correction to be 

strictly accurate, on account of the factor (2y,.)1/2 there omitted from the formula for 

* Cf. Eucken, ‘ Phys. Zeit.,’ 14, p. 329, 1913, Table 6. 
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<r in terms of /i. In this paper I shall give only a few values of <r, calculated from 

recent data and from the exact formula 

0-2 = (1 + ea) 

5 m 

64^ (1 + S/T) 

0*491 (1 +e„)P C 

2 Snm (l +S/T) 

appropriate to attracting spherical molecules. The values of S are determined from 

the variation of viscosity with temperature, C is the mean molecular velocity, while 

eu is found from Table VI. (in all the cases here considered it is quite negligible). 

In the following table values of the diameters calculated from the constant b of 

van der Waals’ law are also given for comparison. The agreement between the two 

sets of values is in most cases remarkable, and the table as a whole is a testimony to 

the close numerical accuracy now attained by the kinetic theory ; where there is 

disagreement in the table there is in most cases uncertainty as to the data. 

While exact agreement may be expected only for monatomic gases, the values for 

diatomic gases show that our theory gives a mean diameter, in other cases, which agrees 

with that found for b ; the internal energy which prevents the application of our 

formulae to the conductivity of polyatomic gases hardly affects viscosity. 

Table VIII.— Molecular Diameters Calculated from Viscosity and 

Van der Waals’ Law. 

Gas. o ►—>
 

O
 

S. 1 + «a- 
(Table V.) 

Van der Waals’ 

b. 
2ovl08 

(viscosity). 
2ov 108 

(Van derWaals.) 

Argon . 2107 162 1-002 0-001347 2-84 2-85 
Krypton .... 2334 182 1-001 0-001774 3-12 3-14 
Xenon . 2107 252 1-000 0-002304 3-47 3-42 
Helium. 1885 75 1-006 0-000432 1-89 1-96 
Oxygen .... 1923 130 1-005 — 2-93 2-89 
Hydrogen .... 854 76 1-006 0-00096 2-36 [2-52] 

Nitrogen .... 1672 112 1-003 0-00255 3-10 
f 3‘54 
\3-08 

Air. 1721 111 1-004 0-00209 3-08 3-30 

Carbon dioxide . . 1388 249 1-000 0-00228 
/ 3-27 
\ 3 • 20 

3-40 
3-20 

References. 

Viscosity /u0 at 273° C. absolute.—These values are taken from the table onp. 476 of 

my first memoir, where full references may be found. They agree very well with the 

list given by Eucken (‘ Phys. Zeitschr.,’ 14, Table 3, 1913), in which Vogel’s 

determinations are included with other recent values in taking means. 
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Sutherland’s constant S.—These values are those given in the same table of my 

former memoir (what is called S in this paper was there, and is usually, denoted by C), 

where references to sources may be found. The value for krypton was there given 

incorrectly ; I am indebted to Dr. G. Rudorf for the correction. 

van der Waals’ b.—The values for helium (Kamerlingh Onnes), hydrogen, 

nitrogen, air (Rose-Innes), and carbon-dioxide (van der Waals’) are taken from 

Jeans’ ‘Dynamical Theory of Gases,’ 2nd edition, § 194. Those for argon, krypton, 

and xenon (R-amsay and Travers), from Rudorf, ‘ Phil. Mag.,’ June, 1909, 

p. 795, are not direct experimental values, however, but are calculated from critical 

data. 

Diameter 2v1 from viscosity.—These are practically twice the values for the radii 

given on pp. 476, 481 of my former memoir, where, however, errors of calculation 

(here corrected) were made in the case of argon and krypton (as Dr. G. Rudorf kindly 

indicated to me). 

Diameter 2a2 from van der Waals’ b.—-The value for oxygen, and the second 

values for nitrogen and carbon-dioxide (as well as 2<rl for the latter) are from Table 7 

of Eucken’s paper ; he does not give his authorities, but his values are probably the 

most recent and reliable. The value for hydrogen, he says, is doubtful. 
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I. Intbohuction. 

1. This paper deals with the possible existence of a temperature coefficient in the 

law of gravitation and gives an account of experiments made to discover this 

coefficient. The apparatus used • is of the Cavendish torsion-balance type, and the 

range of temperatures is from 15° C. to 250° C. The result of a prolonged research 

is shown in the summary. 

The accumulation of negative results in the experimental study of gravitation is 

remarkable. In consequence of the indifference of the gravitative force to changes of 

conditions (other than those given by the simple law f — GMm/d2), none of the many 

theories of gravitation so far propounded has received general acceptance for lack of 

.VOL. CCXVI.-A 544. 3 B [Published May 27, 1916. 
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data wherewith to test them. Some recent theories, which consider the possibility 

of temperature effect, are :— 

N. Morozov* advances a wave theory on which the attraction of masses would 

vary with temperature. 

G. Mie,| a theory of matter which includes among its corollaries a temperature 

coefficient of l/lO13 per 1° C. to the “ so-called Newtonian constant.” 

N. Bohr,| in a paper on the constitution of the atom, assumes that gravitation 

like radio-activity is unaffected by all physical and chemical agencies, and hence the 

writer ascribes both these properties of the atom to its nucleus; whereas other 

physical properties are due to the electrons in the outer regions of the atom. But it 

should be noted that, at least as regards temperature, the data for gravitation are 

deficient. It is not easy to conduct experiments on a short range of one or two 

hundred degrees (see later) which is a small portion of the thousands of degrees of 

known measured temperatures. So it is necessary to speak with diffidence on this 

special branch of the subject of the constitution of the atom. 

2. Determinations of the Newtonian constant have hitherto been made at ordinary 

temperatures only, special care being taken to maintain uniformity in temperature 

throughout the apparatus used ; otherwise convection in the air or strains in the 

movable system might produce grave errors. This is shown repeatedly in the well- 

known researches by Prof. C. V. Boys§ and Prof. J. H. Poynting.|| The necessity of 

providing a steady temperature about the delicate parts of the apparatus has hitherto 

been considered an insuperable bar to any direct experiment to discover a temperature 

effect for G. In fact, in 1905, shortly before the present research began, the late 

Prof. Poynting and Mr. P. Phillips^ wrote as follows.:—The difficulties of exact 

determination (of the Newtonian constant) at ordinary temperatures are not yet 

overcome and at very high or low temperatures they would be so much increased 

that the research seems at present hopeless.” 

3. Yet indirect investigations have been made. Poynting and Phillips** counter¬ 

poised a mass of 208 gr. on a balance and varied its temperature between 100° C. 

and —186° C. They came to the conclusion that the resulting change in weight, 

if any, is less than l/lO9 for 1° C. for the range 100° C. to 0° C. and l/lO10 for 1° C., 

for the range 0° C. to —186° C. 

Another balance experiment on change in weight with temperature by Southerns ft 

led to a somewhat similar result. 

* ‘ Jurn. Russik Chimicisk Obscestva,’ 40, 2, pp. 23 to 35, 1908. 

t ‘Ann. der Pkys.,’ 1913, No. 1. 

J c Phil. Mag.,’ July 26, 1913. 

§ ‘ Phil. Trans.,’ 1895. 

|| ‘Phil. Trans.,’1891. 

U See ‘ Roy. Soc. Proc.,’ A, vol. 76, p. 445, 1905. 

** Loc. cit. 

ft ‘ Roy. Soc. Proc.,’ A, vol. 78, 1906. 
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4. In looking for a method to continue and extend these researches it should be 

observed that a weight of, say, 1 gr. can be determined by a first-rate balance to 

l/lO8, under favourable conditions,* whereas in a gravitation apparatus (e.g. that of 

C. Y. Boys) the attraction of one mass to another cannot be found to be better than 

l/lO5 at the utmost. Thus, apart from other reasons, it would be futile on the latter 

type of apparatus to look for a temperature effect (at least between 100° C. and 

— 186° C.) on the small mass m, since the above negative results have established the 

result with the greatest possible accuracy. 

But in these balance experiments of Poynting and Phillips the large mass M (in 

this case the earth) is unchanged in temperature. Now M is incomparably larger 

than m and may have a preponderating influence, whereby change of its temperature 

alone would affect the mutual attraction. In the paper quoted Poynting and 

Phillips suggested (though without any a priori grounds) the feasibility of some 

such expression as the following :— 

Mm I 

~¥'. 
/=G 1+i 

(M t + mt') 

M + m 

where k is a temperature coefficient and t, t' are 

M and m. 

When M/m is very great, this reduces to 

/ = G [1+itf] 

increments in temperature of 

II. 

so that, on the above supposition, the mutual attraction would be influenced by change 

in temperature of the large mass only. 

Admitting the possibility involved in II., we must abandon weight experiments, 

and proceed to the use of a full gravitation apparatus, having both masses (M and m) 

under control as regards temperature. 

It is supposed by some that Kepler’s 3rd law establishes the constancy of G, but 

I have tried to showf that this is false, and that the common practice of obtaining 

the masses and densities of heavenly bodies (sun, earth, planets, &c.) by assuming the 

invariability of G is at fault. 

5. The above appears to me one case in which Kepler’s laws have been strained 

beyond their legitimate use; another case was pointed out long ago by M. Vicaire.J 

He showed that when one of two attracting gravitative masses, M, is very large 

compared with the other, m, the fact that the acceleration of the latter is independent 

of its mass follows in all cases where the law of attraction is of the form 

* See Poynting’s paper, ‘Phil. Trans.,’ 1891. 

t See ‘Nature,’ 7 Oct., 1915. 

\ ‘ Comptes Rendus,’ vol. 78, pp. 790 to 794. 

3 B 2 
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k being any number and f any function expansible by Taylor’s theorem which 

vanishes with m/M. For on expanding by Maclaurin’s theorem we have 

acceleration = Mk~]f' (0) i. 

This is independent of m and therefore satisfies the experimental facts. There is 

an application of Yicaire’s principle to the present subject ; for k might vary 

according to the temperature of the large attracting body. It need only be constant 

as long as all the physical conditions (other than mass) are constant. 

II. Indirect Experimental Evidence. 

1. It was pointed out by Poynting and Phillips (see paper quoted) that as regards 

small changes in temperature near, say, 15° C., there can be no great variation in weight 

with temperature as shown from various common experiments of great precision : 

(l) pendulum experiments give an appreciably constant value of gravity (g) regardless 

of the small temperature differences occurring at different times; (2) the value found 

for the expansibility of a liquid, say, mercury, is appreciably the same whether the 

dilatometer method or weight thermometer method be used. But the temperature 

range is very small, and we must not conclude from this or from the experiments of 

Poynting and Phillips on weight, that there would be no temperature influence on 

weight if the range of temperature were great. 

2. A survey of previous researches on gravitation affords some slight information as 

to temperature effect :—- 

(1) The temperature of mountain masses and of superficial shells of the earth’s 

surface to a depth of, say, half-a-mile, is well above ordinary laboratory temperatures. 

Hence values of G or of earth’s mean density, A, obtained by these “ earth ” methods 

might differ from those obtained by laboratory methods. The most accurate earth 

methods, say those of Mendenhall, Preston, Yon Sterneck, give a rounded average 

for A of 5'4 c.g.s., whereas the best laboratory methods, say, by Boys, Braun, 

Poynting, Richarz, and Krigar-Menzel, give a mean of 5'51. As the numbers 

stand they show a plus temperature coefficient for G (for G varies inversely as A). 

But inasmuch as the differences between the various “ earth ” results are much greater 

than between the numbers 5'4 and 5'51, no sure inference can be drawn. 

(2) It has been pointed out by Prof. W. M. Hicks that Baily’s results for A show 

a fall in value as temperature rises. This again indicates a plus temperature coefficient 

for G. 

(3) From Cornu’s researches* the mean value of A from winter work was 5'50, 

from summer work 5'56. But in the absence of recorded temperatures we can deduce 

nothing. The apparatus in a laboratory may have a higher temperature in winter 

than in summer. 

* ‘ Comptes Rendus,’ vols. 76 and 86. 
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(4) Prof. C. V. Boys kindly gave me access to the note-books compiled by him in 

his research on A at the Clarendon Laboratory. I found there six complete experi¬ 

ments in which temperature was systematically recorded. Giving all the experiments 

equal weight, we find three whose value for A is below 5'52, the average being 5‘517, 

and mean temperature 15°’9 C.; while the other four which have A above 5'52 average 

5'528, with mean temperature 13°‘8 C. This would show a plus temperature coefficient 

for G of 1/500 for 2° C. rise in temperature. In fig. 1 a graph is shown of these results. 

(5) Von Sterneck* showed that the temperature gradient at a given depth 

in a mine varies from one mine to another, and that the mean density A for the 

whole earth, deduced from his pendulum experiments in the mines, increases as 

gradient increases. This again indicates a plus temperature coefficient. When 
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Fig. 1. Shows the relation A/0 in C. V. Boys’ experiments. 

the pendulum is swinging in a mine the strata immediately above and below would 

have an influence on the pendulum period out of proportion to their masses, on 

account of their proximity to the pendulum, consequently their temperatures would 

influence the results for A, supposing the existence of a temperature effect. Let 

us suppose a plus temperature coefficient. The strata below would always be at higher 

temperature than those above and would attract more strongly than the latter. In 

the case of high gradient this difference in attraction would be greater than when the 

gradient is low, and the result of the experiments would be an apparent value of A 

greater for high gradients than for low. 

3. Of the five sources of evidence above, one is useless from uncertainty as to 

temperature ; but in the other four, in all of which the direction of temperature 

difference is known, an apparent plus temperature coefficient for G is found. There 

* ‘Akad. Wiss. Wien.,’ 1899. 
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is only a l/l6 chance that this accordance is mere coincidence. Yet the evidence is 

slender in view of the uncertainties of such delicate measurements which may involve 

spurious effects of this order of magnitude. 

In the case of the results in Boys’ research we have data quite definite, though small, 

as to temperature, and they are outside the range of experimental error. On the whole 

we are led to expect that in a full gravitative experiment where both M and m are 

involved we should find a plus temperature coefficient of the order l/lOOO for 1° C. 

After §§ 3 to 5 (pp. 350 and 351) we see that this result need not be at variance 

with the numerical figures obtained by Poynting and Phillips. 

In this subject there are three classes of work, the results from which should at 

present be kept separate, viz. :—(1) Change in temperature of both M and m (indirectly 

by Boys, Baily, yon Sterneck and other pit experiments) ; (2) change in 

temperature of M only (directly by the present research, indirectly by Mendenhall) ; 

(3) change in temperature of m only (directly by Poynting and Phillips). 

There is only one class of experiment with which the present experiments can be 

brought into direct comparison, viz., the Schehallien type, and for this class we have 

no assigned temperatures. 

III. Methods Employed. 

1. There are left two possible lines of research with a full gravitative apparatus 

on the influence of temperature on attraction. 

(l) Changing temperature for M and m and the intervening medium ; (2) changing 

temperature of M alone. 

I commenced with method (l), but abandoned it after much labour, the difficulties 

appearing insuperable. A decisive result obtained for the method (2) should go far 

to settle the whole issue for the temperature range involved. 

As to the actual type of apparatus used there are three standard forms (a) the 

torsion balance ; (b) the weight balance ; (c) the pendulum. 

The torsion balance was chosen as combining great sensitiveness with accuracy. 

Under favourable conditions the results agree by this method to l/l0,000 so that it 

affords unparalleled refinement; but there are two great troubles attending this 

extreme delicacy, viz. :— 

(l) The law, for maximum load on the fibre short of breaking, is 

sensitiveness cc l/(diam. of fibre)2, 

since carrying power varies as (diam.)2, and stiffness to torsion varies as l/(diam.)4. 

Thus for attainment of the best results one employs a small factor of safety in 

loading the fibre and breakages easily occur. Quartz fibres (as used chiefly here) 

often stand a load for many hours and then break. Hence all fibres before use must 

be subjected to careful load-time tests. Even after taking this trouble a small shock 

during installation may cause breakage. 
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(2) Trouble attends the use, as in these experiments, of a vacuum. The beam of a 

torsion balance has five degrees of freedom, and each mass suspended from the 

beam end has two effective degrees of freedom. In a vacuum, where damping is small, 

the beam system often gets beyond control. 

To come to details, the large attracting masses outside the vacuum will be denoted 

as before by letters M, M, and the small ones inside the vacuum by letters m, m. The 

masses used are of various forms : (a) spheres ; (b) cylinders, with axes vertical; (c) the 

approximately cylindrical form of vertical chains. The spherical form is the most 

sensitive, yet the cylinder has two advantages. It is compact for some heating 

purposes ; also the law of force for cylinders involves distance to the first power 

approximately, so that error in position is not so serious as for spheres where the 

square of distance is involved. The law for spheres being well known, that for 

cylinders only will be proved :— 

2. The Law for Cylinders.—-The law of force for infinite parallel cylinders, one 

having much greater sectional area than the other, is found thus :— 

Let the small cylinder cut the paper normally at O. Its attraction on unit mass 

at P = 2Gm-j/R, where It = distance from P normal to the cylinder, and <mx = mass 

of unit length of the cylinder. Let the second parallel cylinder of large section have 

axis at O' and have mass per unit length m2. Consider element of cross-section ds 

at P. Its mass = m'2- > where a = radius of cylinder. 
7-a 

The total attraction per unit length is 

cos \[s . ds 

the integral to be taken over the whole cross-section of the cylinder. Using the 

symbols in the figure 

P cos f = d—r cos 6 

R2 = d2 + r2—2d . r cos 0 

ds — r. dr . dd, 
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therefore 

therefore 

cos . ds 

~R~ 

F = 

(d—r cos 0) r . dr dO 

d2 -t-r2—2d . r cos 6 

J_ / d2-r2 

2d \ d2 + r2 — 2d . r cos 0 

0 2Gm,m2 fa r dr 
2 —5s—2 —r a Jo d 

2Gm1m2/d. I 

for finite cylinders (M andm) whose length (l) is great cf. with the distance between 

the axes, we have approximately 

F = 2G^-y -Ifd 
L L 

= 2GM m/ld.II. 

hence increase in length of the cylinder, for constant mass, decreases sensitiveness, 

since l increases faster than d decreases. 

The exact solution for finite cylinders would be exceedingly difficult and for present 

purposes is not required. 

3. The Sensitiveness Attainable for Spherical Masses.—Many factors are involved. 

Let a — arm of the torsion balance, n = rigidity of fibre, r and l equal respectively 

radius and length of fibre, 6 — angular twist of fibre ( cc sensitiveness), K = moment 

of inertia, and T = period of the torsion system. Using other letters as before, we 

have 
2GMma _ irnr'l6 

d2 ~~2T’ 
couple = 

therefore 

but T2 = 8tt2K—— ’ therefore 
7rnr 

4GM?na l 

~d2 ' 

4GMmaT2 

d2. 8tt2K ' 

I. 

II. 

* 

When M, m are close together, on being small, we have 

therefore 

where 

but Kima2, therefore 

cT 

4GMmaT2 _ GW’onaV 

(6M/tt)2/s . 8tt2K Iv 

C = constant, 

6 = CM1/s T2/a. . . III. 
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This is the point established by C. Y. Boys that for a given convenient value of T, 

Ovaries as l/a and is independent of m. Hence we make the beam short for sensitive¬ 

ness. As to the value of T, we find the system is easily worked if the period does 

not exceed 5 mins. ; but when it approaches 30 mins., the control is insufficient. It 

is well to aim at a value of T about 4 mins. 

In my experience the best quartz fibres are of about 15/x diam. Taking this as 

the size of the fibre and knowing its length we arrive at m. Hence for a given value 

of T we obtain the length of the beam. Equation III shows that sensitiveness 

oc M1/s oc B,D1/5, where It, D are the radius and density of the large sphere. 

We see, then, that radius rather than density of M should be large. Thus copper 

would do almost as well as lead, provided it can be obtained equally free from 

magnetic impurities. I used lead, partly for its greater effect, partly for purity, and 

partly for economy, but for high temperature work where lead would melt, copper or 

other material of high melting point would be used. 

IY. Precautions. 

1. Apart from gas effects, there are two kinds of force to be avoided, viz. :— 

(a) Electrostatic.—-Entirely surrounding the vacuum vessel, except at the window, 

are metal tubes through which tap water flows. This system forms a perfect earthed 

screen between any external field and the movable system. But it is possible that 

• in a vacuum charges may arise on gas particles leaving the solid surfaces after 

occlusion; or some internal charge may arise in some other way. Any such charge 

should be removed by the “earthed ” metal lining to the vacuum vessel. 

Again, charges arising from contact of different metals were avoided by having all 

the materials composing the -beam system (including the lining sheath of the tube 

mentioned above) made of the same metal. Thus, in the final arrangement, the balls, 

m, m, the wires carrying them, the beam frame, and the mirror case were of the 

purest silver. The only foreign materials in the whole system were the small beam 

mirror and a minute amount of Margot’s solder (see p. 364) used to fix the mirror 

case to the beam wire. 

(b) Magnetic.—Impurities of iron, nickel and cobalt were avoided in the materials 

composing M, m and all parts connected to them. After working any of these 

with a tool, or after handling, the surfaces were dipped in nitric acid and well 

washed. 

Iron screws, clamps, &c., were not used on parts of the apparatus adjoining M, m. 

If the internal, moving, system were entirely unmagnetic then magnetism of the outer 

parts would not matter; but suppose the inner system is slightly magnetic, it would 

respond to any magnetic influence, say, from M. When temperature is changed this 

response would change also, for the permeability of M would change with temperature. 

Thus we should have an apparent change in gravitative attraction, and this spurious 
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effect would be hard to disentangle from the true gravitative temperature effect as 

they would both be cyclical. 

2. We now come to the action of the gas remanent in the vacuum tube. The 

mechanical effects which this produces on the delicate torsion system are very complex. 

There are four distinct influences at work, viz., convection, radiometric pressure, 

discharge of occluded gases, damping :— 

(a) Convection.—This causes great trouble in the ordinary gravitation experiments ; 

here, where temperature is greatly changed, it would make measurements at normal 

pressures useless. Hence we use a vacuum. In the highest attainable vacuum, 

convection would quite vanish. We even find that for a poor vacuum of about 

1 mm. it produces little disturbance in a properly screened apparatus. 
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Fig. 3. Gas troubles depending on pressure in a vacuum. 

(b) Radiometric pressure is a maximum at a pressure of 30//. of mercury 

(/ul = l/lOOO mm.). It has been detected at a pressure of 0‘015/x, but it is negligible 

for lower pressures and probably for pressure higher than 1 mm. with due precautions. 

(c) The evolution of occluded gas from the wall of the vacuum vessel and from 

the torsion system should be negligible, even in a high vacuum, after long continued 

exhaustion with heat, as in these experiments. 

{d) In a high vacuum the damping of the torsion system of great period is 

perceptible, though slight. But it is essential that the tremors continually received by 

the torsion system from the ground should be quickly damped out if accurate telescope 

readings are to be taken. The present research has been carried out in the heart of 

Nottingham, with a trunk railway system a quarter of a mile away, so that even in 

the dead of night it has been impossible to use high vacuum, except for the particular 
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case when m, m have the form of chains. But a low vacuum of I mm., or greater, 

acts well, especially with the work performed between 9 to 5 at night. 

It is important to attain the best conditions in the action of all these gas factors 

(which appear to be mutually incompatible). 

The accompanying graph shows gas pressure as abscissae on a logarithmic scale, 

while the ordinates indicate trouble due to any factor at any pressure. 

The proportions are conjectural, depending on the conditions of any particular 

experiment. Convection is roughly proportional to pressure down to a vanishing 

quantity below 1 mm. Damping, unlike convection, is nearly independent of pressure 

to about 100//. It is represented below the axis of abscissae as being a blessing 

rather than an evil in these experiments. I have worked in these experiments chiefly 

at about 14 mm. and about 20m/z (he., 20 x 10_6mm.). It will be seen that these two 

are favourable regions. Poynting and Barlow (P. and B.) used a very high vacuum 

in their research on recoil from light. Braun (B.) in the determination of the 

Newtonian constant had pressure of 4 mm., while Nichols and Hall (N. and H.) 

worked at 16 mm. in their research on radiation pressure. 

As distinct from the above we have Poynting and Phillips (P. and P.) working in 

their weight experiments at 16// which is unfavourable, as being in the thick of the 

radiometer region, and although convection which they specially feared would at that 

pressure be negligible deocclusion for the temperature 100° C. might be considerable. 

3. Radiation Pressure.—This is yet another factor which must be borne in mind. 

The practice is to maintain the lamp for illuminating the telescope scale steadily 

alight before and throughout the experiment and to keep it practically constant in 

position. No other lamp comes within view of the interior of the apparatus. 

Moreover, for the elimination of this and of the gas actions, the walls of the vacuum 

are maintained uniform in temperature. Taking these precautions it is expected 

that the radiation pressure on the mirror of the suspended system will be constant 

throughout and will thus introduce no error. 

Besides the many precautions mentioned, there are others incidental to the use 

rather than the design of the apparatus and will therefore appear in the detailed 

account following. 

V. Early Experiments. 

The Cavendish experiment has been developed to high excellence, but there is no 

previous investigation on the temperature effect to indicate the best way to avoid the 

many troubles sure to beset the investigation. The early methods, briefly mentioned 

below, failed for reasons given in each case, but they provided useful experience :— 

(l) The first apparatus used was made of brass of special purity. The large 

masses were rods of lead coated with gold and the small ones were of purest gold 

wire. These were all hung together in the brass vacuum vessel. This form was 

3 C 2 
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abandoned on account of the difficulty of maintaining a high vacuum in a metal 

vessel. 

(2) Next I tried, as the vacuum case, a glass tube 160 cm. long, 2’5 cm. bore. 

The small masses were wires, and the large ones, now outside the vessel, were also 

stout wires. This particular form of suspension, if in high vacuum, retains any 

vibrations it may receive with great persistency, so the apparatus was set aside. 

(3) The third form was a glass vessel provided with a window, W, and two other 

flanged openings, G, H (see elevation fig. 4, and plan section fig. 5). It was very 

H 

Figs. 4 and 5. Show the third form of apparatus used. The reason for having twin tubes is to provide 

for change in temperature of both large and small masses. The window is not shown in fig. 5. 

sensitive ; in one experiment the period was 33 mins., and the scale movement was 

560 mm. The beam is shown carrying the small masses, m, m in chain form. The 

whole suspended system was of purest aluminium. The large masses, M, M, as shown 

in fig. 5, are in front or behind tubes, C, D, according to requirement. 
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One peculiarity of this form of suspension is that it never of itself comes to rest. 

For when the beam touches one tube at the end of a swing, it receives, by the tremors 

in the apparatus, enough energy to send it to the other end of its swing. This 

perpetual motion was counteracted by an arrestment (shown in the left side tube) 

worked by a magnet outside the vacuum. By this device the system was brought 

under control. 

This form of apparatus was abandoned on account of an unexpected form of 

attraction which caused the masses, m, m, to rush to the walls of the vacuum vessel 

and cling there indefinitely. These forces are very strong and existed despite the fact 

that there was a complete “ earthed ” system of aluminium tubing lining the vacuum 

vessel and that the suspension was “ earthed.” After separate investigation this effect 

was attributed to radiometric-pressure, which cannot be avoided in this form of vacuum 

vessel. 

In the final form of apparatus, to be next described, there are two distinct sets : 

(a) where the attracting masses are cylindrical; (b) where these are spherical. 

But as the latter type is more important, the following description applies to it 

throughout. 

VI. Final Experiments. 

1. General Description.—-In this form one may be said to have at last attained 

some mastery over the investigation, so that details will be given. A glass tube, AB, 

(figs. 6 and 7) is 1200 mm. long, 50 mm. bore. It is supported near the top by two 

strong glass tubes, C, D, issuing from opposite sides of the main tube (see fig. 6). 

The top and bottom of the main tube are closed and there is a window, W, in front. 

Tube C, finishes with a platinum wire sealed in for the purpose of earthing the inside 

of AB; while tube D is the connection to the pumping system (see fig. 6). 

2. The Support for the Vacuum Tube.—The glass tubes, C, D, rest on gimbals, 

CD, forming one axle, while a forked frame-work, V, of brass (fig. 8) carries the 

perpendicular axle, and itself is supported by being screwed to a stout beam. This 

beam, loaded by about 40 kilos, of lead weights, is carried by steel springs hung from 

the main scaffolding, and there are castor oil dash-pots to damp any chance vibrations 

which may be received from the ground. 

The lower end of tube AB, socketted into a copper sleeve, Cu (fig. 8) is controlled by 

four setting screws mounted on a horizontal ring, ab. By this means AB can be set 

and held accurately vertical. 

3. The Torsion-head System.—A brass frame-work (fig. 6) fits firmly by three pairs 

of brass springs into the upper part of tube, AB. These six spring points are tipped 

with solder to avoid the well-known danger of hard metal scratching the inner surface 

of the glass tube. There are two magnets in the frame-work ; the lower one, mx, 

carries the suspension by pin, p, which turns freely, but without shake, in the two 

thoroughfare bearings shown. The upper magnet, m2, is mounted on a screw so that 
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Fig. 6. Shows m, to in the form of chains. 

rN 
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on turning one way on a vertical axis, it rises ; on turning the other way, it falls, and 

in so doing clamps mx by pressing hard on it. The horse-shoe electro-magnet, E 

(figs. 9 and 10), can be raised or lowered to operate mx or m2. By this torsion-head 

arrangement the suspension can be set and clamped, wherever desired, in vacuo. 

Fig. 8. Shows the tubing for evacuating and washing out with oxygen ; also the tube and funnel mounted 

on the window. The weight of this tube and funnel is carried by a wire attached to the main 

scaffolding. Part of the water-jacket, but no lagging, is shown at the lower end of tube AB. 

4. The Small Mass (m, m) System.—The suspension is seen in the core of tube, AB 

(figs. 6, 7, 9, 10). The beam and the vertical wire, b, attached to its centre are of thin 

wire. The mirror, Si, is enclosed in a case of thin foil and is so attached to the vertical 

wire that a fine inclination up and down can be made at will. The long copper or 
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silver tube, Ct, inside AB, has a rosette hole (see fig. 6) cut in it at the window, W. 

Fig. 9. Shows the final form as used with rigid 

suspension. (No wrappings shown.) 

(TXo full size.) 

By opening the rosette carefully it is 

possible to see mirror, S1? whilst exposing 

little of the inside of the tube. Thus mirror, 

Si should be as far as possible screened from 

any radiometric action and from electro¬ 

static charges on window, W. The actual 

small masses, m, m, are (in the form shown 

in the figure) made of chain, 30 cm. long, 

and are hung from the beam ends by very 

fine wire. 

The materials used throughout the 

system are wholly copper or wholly silver 

(both having very low permeability). The 

metal in each case was supplied by Messrs. 

Johnson, Matthey, in the form of wires 

and foils. They stated that the copper 

was electrically refined, prepared from 

precipitate. If any traces of foreign 

matter exist it would be minute particles 

of gold and silver. The silver should be 

absolutely “chemically pure.” The torsion 

fibre (usually quartz, sometimes phosphor- 

bronze) is 480 mm. long, soldered to the 

beam system below and to the torsion-head 

above by Margot’s solder.# 

5. The Optical Arrangement. — The 

window glass, W, which is of selected 

plate glass, is sealed to the window flange 

by white wax. The window glass has two 

holes drilled in it by means of which a 

mirror, S2, can be firmly fixed. This mirror 

which is adjustable in elevation shows the 

azimuth of the whole vacuum tube, and 

therefore that of the torsion-head, whereas 

mirror, Si, shows the azimuth of the torsion 

beam. Thus the difference between the 

two telescope readings given by these two 

mirrors shows at any time the exact amount 

of torsion on the fibre with elimination of any error due to movement of tube or telescope. 

* See “ Sealing Metals,” by P. E. Shaw, ‘Proc. Phys. Soc.,’ Feb., 1912. 
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Fig. 10. Shows the final apparatus (| full’ size)iiwith limp suspension. This is the best arrangement. 
For clearness no lagging outside the water jacket is shown. The large amount cut out half waj up 
the diagram will be appreciated by comparison with fig. 9, which has identical essential pails. 
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Facing the window, at 4|- m., is an astronomical telescope of 7'5 cm. objective. Over 

the telescope and perpendicular to it are two scales, each illuminated by a glow lamp 

which is adjustable by pulleys and strings to any place on the scales, whilst the scales 

themselves can be moved vertically up and down and clamped anywhere. 

Fig. 8 shows the connections for evacuating. A Gaede rotary pump and McLeod 

gauge are used. For washing out the vacuum, oxygen is obtained by heating mercuric 

oxide. Ca is the carbon tube and the three taps, tu t2, tz, well-made and properly treated 

with rubber, grease and wax, as explained elsewhere, are reliable for any length of time. 

6. The Large Mass (M, M) System.—The two large spheres are of lead, 20 cm. 

diam., and weigh each about 47 kilos. I am much indebted to my colleague, 

Prof. C. H. Bulleid, for the great care and personal skill he put into the construction 

of these large masses. The special desiderata for them are : Freedom from air 

bubbles, freedom from iron, and accurate alignment in each, of three parallel brass 

tubes. A wooden pattern having been placed half-way in a moulding box, the latter 

was filled in with plaster of Paris. This made half the mould. The other half was 

made similarly with another box. The three brass tubes, full of plaster, were placed 

in position. The moulds were then roasted to dryness for several days before use. 

Commercial sheet lead only was used for the melting pot. As the molten lead was 

run into the mould great care was taken that cooling should proceed from below 

upwards. Hot cokes were laid on top of the mould, while the lead solidified at the 

bottom. The lead was puddled by a hot copper rod to dislodge all air bubbles. This 

process continued as solidification proceeded until finally the runner solidified. The 

spheres were of the same weight to 15 gr., so there was small likelihood of enclosed 

air. The tubes having been cleared of plaster and the spheres washed and swabbed 

with nitric acid to remove iron dirt, a stout carrier consisting of a copper rod, 1 cm. 

diam., screwing into a thick copper disc, was fitted into the central hole (figs. 9 and 10). 

The spheres are hung from the turn-table by copper wires. The two other holes in 

each sphere are fitted with tubes of asbestos and mica sheet rolled together ; into each 

is then placed a heating coil of nichrome (16 ohms resistance). The leads, l, l (fig. 9) 

for the heating coils are carried up to the turn-table. By this disposition these 

leading wires exert no influence on the hang of the spheres. The lead spheres are 

covered with two layers of cotton-wool, laid on in gores, for lagging. Over the cotton¬ 

wool is a layer of tin foil. In the experiments the whole heavy system can be rotated 

on a vertical axis with ease and smoothness on the ball-bearings shown in the figures. 

7. The Form of the Beam System.—In fig. 12 are shown six forms of .suspension, 

all of which have been exploited for these experiments. In each case the torsion fibre 

is attached to the top, and the mirror is shown as a small square. Any one of these 

forms would act well, if no tremors reached the suspended system from outside, but 

as vibrations do arrive from outside, some of them are unworkable in a vacuum vessel 

where there is no gas-damping. 

It is a novelty to have a suspended system of limiting sensitiveness used in a high 

vacuum, so that the technical difficulties are new. To explain the action, consider 
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form 3 (fig. 12). When a horizontal vibration reaches the torsion head of the 

suspending fibre, it passes down the fibre and reaches the top of the beam system, 

which at first experiences a simple horizontal vibration. Next, the vibration is carried 

down to the wires, m, m, each of which is set vibrating on a horizontal axis about its 

mass-centre. Soon we have a certain amount of pendular motion of two unequal periods. 

When at last the high frequency tremors of the fine wires and fibre have died out, 

there remain, very persistent in a high vacuum, the low frequency movements of m, m. 

All the unsymmetrical systems, 3, 4, 5, and 6, are troublesome for these reasons, 

whereas forms 1 and 2, give relatively little trouble. But the unsymmetrical form is, 

for a short beam, as shown by C. V. Boys, indispensable for sensitiveness. Working 

in the heart of a large city, I failed with Nos. 3, 4, 5, and 6 after long trial, and only 

succeeded with No. 7 (see fig. 10) by allowing in the vacuum chamber a small 

amount of air for damping purposes. 

It might be thought that some form of damping would be possible so as to render 

any beam system workable. Of the known damping methods (l) gas-friction and 

(2) liquid-friction are inadmissible in a high vacuum, but (3) electro-magnetic 

damping which I tried in several ways, failed always. It is impossible to have any 

magnetic material on the beam, and it is risky to have, say, a closed copper wire 

circuit carried on the beam. But there is one other damping method possible, viz., 

(4) rolling friction. I have used chains extensively as in No. 2 (fig. 12) and have 

found that the rolling of one link on the next brings in rolling friction to damp out 

tremors. Such a chain system acts very well in high vacuum, even in a very 

disturbed laboratory. (See results in Table I.) 

8. Sealing Materials Used.—The use of waxes in vacuum vessels is now well 

understood. For joining the optical window and the top glass plate to the vacuum 

tube (see figs. 9 and 10) I use (a) Faraday cement, or, better (b) a white “vapour-free” 

wax (supplied by Lilliendahl, Neudietendorf) ; these both seem much tougher than 

sealing wax or shellac. Then there is (c) a soft red sealing wax sold commercially, 

I never trust any ground glass joint, or any mercury-trap joint, or any platinum seal, 

but in all cases melt some of this wax outside the junction, and also on the top and 

bottom of all ground glass taps to ensure against leakage. (d) Ramsay’s tap grease 

is used to lubricate the taps. At moderate temperature, say 60° C., vapour comes 

off freely from (a) and (6), so such high temperatures have to be avoided for these 

seals, (c) and (d) are by no means vapour-free at ordinary temperatures, but the only 

way in which they come in contact with the vacuum is on the vacuum taps; and the 

small amount here used soon becomes vapour-free in the vacuum, without serious 

detriment to the latter. 

There are many joints in a Gaede mercury pump which become leaky periodically. 

It is well to serve all of them with some melted wax (c). 

9. Preparation of the Apparatus for an Experiment.—Suppose in this instance a 

copper internal system is to be used. The long glass tube (fig. 6) as received from 

3 d 2 
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the glass blowers is open at top, A, and has the two side tubes welded on and the 

window flange prepared. First the inside is given a thick coat of silver up to about 

20 cm. above the window flange. This coating reduces radiation during the 

experiment and enables one to thoroughly “ earth ” that part of the vacuum 

surrounding the suspended system. The central portion, DW, of the main tube is 

wrapped externally with asbestos paper, and over that eureka wire is wound to act 

as a heating coil. The brass tube already mentioned, with platinum wire at one end, 

is inserted in tube C, and the glass sealing on tubes C and D is completed. 

A mercury seal t outside the platinum seal is shown. The copper inner sheath is 

lowered into the main tube and the rosette at the window opened ; the strap, U, 

which carries the sheath, is fitted to the brass tube in C to keep the sheath in position. 

The optically-true window is now sealed on to its flange. 

The torsion system is next prepared. From a frame holding some hundred quartz 

fibres of 60 cm. length and suitable diam. (i.e., from 21 /u to 1 b/j. diam.), four or five 

have been chosen several days before and all have been attached to a horizontal bar 

and loaded with a weight about 25 per cent, more than the actual load used in the 

experiment. It is impossible to predict to within 50 per cent, what a quartz fibre of 

known diameter will carry. A fibre may sustain a load for several hours or even a day 

and then break without external shock being applied. Hence every fibre is given a 

three or four days’ test before use. The finest fibre which has stood the test is fixed 

by Margot’s solder to the torsion head above and to the beam system below, which 

in the present case we will suppose has form 2, fig. 12. The whole suspended system, 

except the small mirror, is of the purest obtainable metal, say copper. After the 

beam system has been put together, but before the fibre is attached, the whole of 

it, except the mirror, is immersed in nitric acid, and then thoroughly washed, to 

remove any trace of iron which may have become attached by tools or by the hands 

during construction. 

It is important to see at this stage that the mirror is properly inclined to the 

vertical as no adjustment of it can be performed later in the vacuum. 

Next the torsion system, i.e., torsion head, fibre and beam system, are lowered 

with the utmost care to prevent breakage of the fibre, into the vacuum tube till the 

torsion head rests sochetted in a hole prepared in the brass tube, C (fig. 6). Several 

asbestos paper discs are placed on the top of the torsion head frame to keep the latter 

cool in the next stage. The top of the main glass tube is next sealed. This sealing 

of a 5 cm. tube requires two operators, one on each side with a blowpipe. Care is 

taken to keep heat from the torsion head just below. In later experiments a glass 

plate was waxed on the top (see figs. 9 and 10). The vacuum tube and contents 

is now cautiously removed and set on its gimbals in the supporting frame. The 

adjusting screws below are so set that the suspended system swings free of the tube 

walls so as to be ready for the experiment. The vacuum side tube, D, is sealed to 

the carbon tube, Ca, and this to the pump (fig, 8). 
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Preparation of the Vacuum.—-A heating coil of eureka wire is pushed tip over the 

lower section, WB (fig. 6), and another put on the upper section, AC, of the main 

tube. The middle section, as stated, is already wired. Also the whole of the glass 

tubing connecting to the pump and McLeod gauge, and the oxygen plant are 

similarly wired. The large carbon tube has a special heating coil of several layers 

designed to attain a high temperature. The whole system of heating coils is put in 

series with a lighting circuit and a current of 3'5 amperes is developed. The injector 

pump and Gaede pumps are started. The temperature attained by various parts is 

arranged according to requirement. The lower part of the vacuum tube, WB, 

attains a temperature of 130° C. The upper tube containing the soldered joints is not 

raised much above 100° C, while the sealed-on plates are kept as a rule below 60° C. 

Any small condensation of vapour on the cool window can be carefully removed by 

placing a carbon glow-lamp in front of it for a short time. The carbon tube is 

raised to 340° C., as shown by a platinum thermometer placed between it and the 

heating coil. The double process of heating and exhausting proceeds for five days 

(say 50 working hours), during which time the McLeod gauge should show steadily 

improving vacuum. At night, when the evacuation is stopped, the taps have to be 

shut in such order that the rapidly cooling main tube shall not receive vapour from 

the hot carbon. On the last day of exhaustion the vacuum would be, say, 10/*, when 

the temperature is full everywhere. Then the vacuum is washed out, once or twice, 

with oxygen to remove traces of the less absorbable gases, nitrogen, helium, argon. 

Finally on cutting off the heat the pressure will drop to the smallest readable by the 

McLeod gauge, say, 0'05/x. The carbon will then be about 200° C. The taps are 

closed till, when temperature everywhere is normal, the taps tx and t2 are opened, and 

all three taps have warm siegelwachs run over them. The glass between tap t3 and 

the pump is sealed off. 

Evacuation being finished, the apparatus has to be prepared for the experiment. 

Adjustments.—First, the torsion head is turned so that the beam mirror, Sx (figs. 6 

and 7), exactly faces the window ; the electro-magnet, E, is lowered until its poles are 

level with the torsion head magnet, and by rotation of E the torsion head is brought 

to the correct azimuth. By raising E to the level of the clamping magnet and again 

suitably rotating the former, the inside magnet is brought down to bear hard on the 

torsion head and thus fix it. Under this condition the mirror, S2, fixed to the window 

will exactly stand for the position of the top of the fibre. Flotation of one always 

accompanies that of the other, both being rigidly attached to the main tube. 

Next, the loose heating coils are stripped off and the whole vacuum system, including 

the connecting tubes wrapped in several layers of cotton wool. Before, however, the 

cotton wool is put on two platinum thermometer wires are wrapped on the glass of 

the vacuum tube, one above, and one below the window, and compensating copper wires 

are arranged. 

In providing a water-jacket to screen the vacuum tube from the hot masses, M, M, 
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it must be borne in mind that temperature should be uniform radially rather than 

longitudinally in the long tube ; for radiometric pressure, not convection, is likely to 

be the main gas trouble. The plan adopted is to have water tubes wound over the 

whole vacuum tube up to the level of the top of the torsion fibre. Similar metal water 

tubes are wound over the tube covering the window. In fig. 8, the covering tube, but 

not the water tubes, are shown. There is a space of about 6 cm. near the window on 

the long tube which cannot be wrapped with metal tube, so rubber tube is used, with 

a specially large amount of closely-packed cotton-wool, in this region. Thus we have 

several layers of cotton wool both within and outside the water helix ; while the hot 

spheres, M, M, are themselves covered doubly in cotton-wool and then in tin-foil. 

Water from the tap passes to the window region and branches into four parts, viz. : 

(a) the upper tube ; (b) the lower tube ; (c) the window cover ; and (d) the window 

region. Each section thus receives water at one and the same temperature. 

After leaving the water-jacket, the water passes into vessels where its temperature 

can be watched. A Page thermostat was attached, but proved unnecessary. 

Next, the whole system of M, M, with the turn-table above (see figs. 9 and 10) is set 

co-axial with the torsion fibre, i.e., until masses, M, M, clear the wrapped tubes equally 

all round ; M, M being so far apart as to just clear the water-jacket everywhere. The 

heating coils of nichrome inserted in insulating tubes in M, M (see fig. 9) are 

connected in series with a 200-volt circuit, the leads being taken right up the copper 

suspending wires to the turn-table to avoid any hampering of the free motion of the 

heavy mass system. 

The last adjustment is to bring the beam to rest. The period of the beam may be 

anything from 2 mins, to 10 mins. The angle of rotation after the above violent 

adjustments is sure to be considerable and in high vacuum the swings are practically 

undamped. 

There are three ways of reducing the swing :— 

(1) By moving the vacuum tube to one side and so bringing it against the beam 

system. Sometimes this succeeds, but great judgment and timing are required or the 

amplitude will be increased instead of decreased by the contact. 

(2) Unclamp the torsion head and rotate the magnet, E, and so time the movement 

of the head that the torsion of the fibre is always acting against the motion of the 

beam. The head must be left clamped finally. 

(3) Gravitational damping by moving large masses, M, M, to always oppose the 

motion of the beam system. This method is too weak to be effective, except as a 

finishing touch to reduce the swing when it is already small, say, 5 degrees of arc. 

The process of damping the swing may take many hours, but it must be done so 

that finally the mirror when at rest would face the centre of the scale (of 500 mm.) 

which is placed about 5 m. away and immediately over the large reading telescope. 

The apparatus is now ready, but it is found that no accurate work can be performed 
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for several days after the rough handling incidental to the adjustments. Since the fibre 

has a factor of safety of only 50 per cent, or so, great care is taken to avoid any jolts 

to the apparatus; the movements given to the beam are due not to jolts, but to the 

occasional contact of the torsion system with the vacuum tube. 

A drift of zero is found to occur, perhaps due to small elastic after-effect following 

the recent heating. I have found that in some unsymmetrical systems in vacuo, 

the zero never comes to rest, since the violent tremors set up by recurrent outside 

vibrations cause either constant strains in the fibre, or constant unbalanced pendular 

oscillations. However, under favourable conditions, readings can commence in 

three days. 

The next step is to ascertain the best angle at which the turn-table must be set for 

Fig. 11. This plan section shows the disposition of the large masses in the A and B jiositions. 

maximum deflection of the beam in the A and B positions (see fig. ll). For spherical 

masses the formula given by C. V. Boys* is very useful, viz. :— 

cos2 0 + a +C cos 6 — 3 = 0, 
ac ■ 

where 0 is the angle for maximum attraction, 

c is distance between centre of beam and that of large mass ; 

a is half the length of the beam. 

Determine 6 in terms of a and c. But as it is most important both for sensitiveness 

and accuracy to have the exact positions of maximum attraction, the matter is settled 

by trial, and when the best positions on the dial of the swing table are found stops are 

placed so that in the coming experiment the same angle is used in every case. 

Before commencing actual readings, it must be decided whether or not the carbon 

tube is to be used cooled by liquid air. In the earlier experiments, liquid air, boiled 

under reduced pressure to give a temperature of —200° C., was used. Later this was 

given up, as the very exhausted carbon at ordinary temperature acted well enough. 

* ‘ Proc. Roy. Soc.,’ 46, 1889. 
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Supposing the carbon is not to be cooled, it is given layer after layer of cotton wool 

and is otherwise screened from heat rising from below. 

10. Description of Experiments.—At the commencement of readings, set the masses 

M, M, at position A (shaded in fig. ll). Watch the beam mirror with the telescope 

A 
5. 

□ □ 

d2 

0- 

m 

m 

Fig. 12. 

m 

m 

A 

d / 

Various forms of suspension used. 

and set down the extreme readings as the beam swings. When three such readings 

have been taken, rotate M, M to position B, and proceed as before. For every position, 

A or B, the tube mirror reading (S2, fig. 6) is taken by the telescope. 

In Table I. are shown the results of an experiment with cylindrical masses. 
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Table I.—-June 23, 1914. Silver Chains (m, m.). Lead Cylinders (M, M). 

Vacuum Pressure, 1‘0/x. Oscillation Period, 252 minutes. 

Position. 0L. dT. L. R. Mean. T.R. 
Corrected 

mean. 
Range. 

Mean 
range. 

I. s teady Col d. 

°C. ° c. 
A 17 17-0 191- 8 

192- 1 
263-8 

227-8 
227 • 9 

9J/.-5 227-85 

57-48 

B 132-7 
208-1 
207-8 

170-4 
170-25 

94-45 170-37 

57-63 
A 193- 8 

194- 0 
262-0 

227- 9 
228- 0 

94 ■ 45 228-0 

57-68 57-57 

B 133-7 
207-0 
206-7 

170-35 
170-20 

94-45 170-32 

57-48 
A 187- 8 

188- 0 
267-7 

227-7 
■227-8 

94-45 227-8 

57-58 

B 136-8 
203-7 
203-4 

170-25 
170-10 

94-45 170-22 

II. Steady Hot (after heatin g- for five hours). 

B 210 18-5 133-4 
213-5 
213-3 

173-45 
173-35 

94-7 173-20 

57-70 
A 194- 9 

195- 3 
267-2 

231-05 
231-25 

94-95 230-90 

57-65 

B 212 139-0 
208-6 
208-4 

173-80 
173-70 

95-2 173-25 

57-87 
A 18-5 193-3 

193-6 
269-4 

231-35 
231-50 

95-0 231-12 

57-65 57-67 

B 137-6 
210-1 
209-8 

173-85 
173-70 

95-0 173-47 

57-60 
- 

A 196- 9 
197- 0 

265-8 
231-35 
231-40 

95-0 231-07 

57-72 

B 139-0 
209-0 
208-8 

174-0 
173-9 

95-3 173-35 

57-52 
A 212 18-5 193-6 

193-9 
269-2 

231-4 
231-55 

95-3 230-87 

In and after column 4, all readings are expressed in millimetres. 

VOL. CCXVI.-A. 3 E 
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Table I. (continued). 

Position. L. R. Mean. T.R. Corrected 
mean. Range. 

III. Falling Temperature. 

Mean 
range. 

°C. °C. 

B 177 18-5 137-3 
210-2 
209-8 

173-75 
173-55 95-70 172-65 

57-85 
A 194-0 

194-0 269-3 
231-65 
231-65 95-75 230-50 

57-50 57-65 

B 160 138-7 
209-6 
209-4 

174-15 
174-05 95-80 173-0 

57-65 
A 152 198-0 

198-2 
265 • 3 231-65 

231-75 95-80 230-65 

In and after column 4, all readings are expressed in millimetres. 

Column 1 shows the position of masses, M, M. The next two columns have the 

temperatures of the masses, M, M, and of the vacuum tube, respectively. Columns 

4 and 5 give the extreme left and right scale readings, as the beam swings. Column 6 

shows the arithmetic mean of the two preceding column readings, while column 8 

shows this value corrected for change, if any, in the tube reading (column 7). The 

rest is obvious, heat being applied as already explained. There are three sections in 

the experiment, I., steady cold ; II., steady hot; and III., falling hot. By combining 

I. and II. we obtain as temperature effect 

a — +0'8 x 10~5 per 1 ° C. 

By combining I. and III., we find a like result. 

It will be observed that the vacuum is high ; the pressure I'O fx is calculated from 

the damping of the oscillations. 

Only this one example for cylinders will be quoted in full, for, though the readings 

are steady, the subsequent work with spheres is more sensitive and more reliable in 

general. 

In Table II. are entered the results of an experiment with spheres. Here we have 

seven sections, the last half, hot and cold, being taken ten days after the first. It 

will be seen that the interval of rest makes no appreciable difference in the result. 

Column 2 shows the time, column 3 the reading of the tube (reference) mirror. The 

fourth column has the extreme scale readings right and left as they occur, and the 
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Table II.—July 27, 1915. Silver Balls (m, m). Lead Spheres (M, M). 

Vacuum Pressure, 14 mm. Oscillation Period, 280 minutes. 

Position. T. T.R. R. ; 
Ampli¬ 
tude. 

Z. Range. 
Mean 
range. 0L- 9lt. 

- °c. °C. 
A 4.11 345-0 37-5 

267-8 
230-3 
155-3 
104-3 

175-0 i 
17 13-0 

112-5 174-9 
216-8 (174-95) 

200-75 
B 345•35 193-0 

297-5 
195-5 
131-4 
88-4 

376-1 
428-9 376-0 
340-5 (375-7) 

200•85 200-85 
A 345 • 1 53-3 

257-3 
119-5 

204-0 
137-8 
92-7 

175-0 
174-9 

212-2 (174-85) 
200-95 

B 345-4 425 ■ 9 
342-9 

83-0 
55-9 
37-8 

376-3 
17 

398-8 376-2 
361-0 (375-8) 

Heat at 8.2. Stop Heat at 10.2. 

. B 10.23 345•45 241-8 
466-8 

225 • 0 
151-6 
102-1 

376-2 
206 12-3 

315-2 376-2 
417-3 (375-75) 

201-05 
A 345 • 0 19-4 

279-2 

_ 
259-8 
174-8 
117-6 

174-7 
- 198 

104-4 
222-0 

174-7 
(174-7) 

201•25 
B 345•35 476-9 

308-6 
421-8 

168-3 
113-2 
76-1 

376-3 
376-3 

191 

345-7 (375-95) 
201-25 

A 10.55 345-0 52-7 
256-7 

204-0 
137-1 
92-2 

174-7 
183 

119-6 174-7 
211-8 (174-7) 

201-3 
l . 

201-25 1 
1 

Readings in columns 3, 4, 5, 6, 7, 8 are in millimetres. 

3 E 2 
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Table II (continued). 

Position. T. T.R. R. 
Ampli¬ 
tude. 

Z. Range. 
Mean 
range. K 

■ 

Heat at 8.2. Stop Heat at 10.2 (continued). 

°c. °C. 
B 11.6 345-3 482-1 

305-1 
424-1 

177-0 
119-0 
80-0 

376-3 
376-3 

174 

344-1 (376-0) 
201-35 

A 11.22 345-0 40-4 
264-7 

224-3 
150-7 
101-6 

174-6 
163 

114-0 174-7 
215-6 (174-65) 

201-25 
B 345 • 3 492-9 

297-9 
195-0 
130-9 
88-0 

376-2 
428-8 376-2 
340-8 (375-9) 

201-15 
A 11.50 344-95 50-3 

258 • 4 
208-1 
140-1 
94-4 

174-7 
148 12-4 

118-3 174-7 
212-7 (174-75) 

Pause. 

B 3.21 345-2 483-9 
303-5 

180-4 
121-5 
81-7 

376-1 
425-0 376-1 
343-3 (375-9) 

• 200-8 
A 344-85 45-7 

262-1 
116-4 

216-4 
145-7 
97-7 

175-0 
174-9 

71 

214-1 (175-1) 
200-8 200-85 

B 345-15 464-8 
316-5 198-3 

99-5 
66-8 

376-1 
416-0 376-0 
349-2 (375-9) 

201-0 
A 3.54 344-8 52-0 

257-5 
118-9 
212-3 

205-2 
138-6 
93-4 

174-7 
174-7 

(174-9) 

66 

Readings in columns 3, 4, 5, 6, 7, 8 are in millimetres. 
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Table II. (continued). 

Position. T. T.R. R. 
Ampli¬ 
tude. 

Z. Range. 
Mean 
range. K H

 

Paus e. 
°c. * C. 

B 7.2 345-0 467-2 
314-3 152-9 

103-1 
69-4 

375-9 
43 

417-4 375 • 9 
348-0 (375-9) 

201-1 
A 344-7 53-0 

256-3 
203-3 
136-8 
92-1 

174-5 
119-5 174-5 
211-6 (174-8) 

200-85 
B 7.24 344-95 477-0 

307-6 
421-6 

169-4 
114-0 
76-7 

375-7 
375 • 7 200-95 

41 

344-9 (375-75) 
- 200-9 

A 344-7 269-0 
110-8 

158-2 
106-7 
71-8 
48-2 

174-5 
217-5 174-6 
145-7 174-5 
193-9 (174-85) 

201-0 
B 7.52 344-95 461-2 

318-5 
142-7 
95-8 

375-8 
40 

414-3 (375-85) 

Pause for 9 days. August 4, 1915. 

A 9.50 3J&-7 61-5 
246-4 
122-2 

184-9 
124-2 
83-5 

172-1 
172-1 

17 

205-7 (172-1) 
200•85 

B 343-0 473-0 
306-2 

166-8 
112-1 
75-5 

373-3 
418-3 373-2 
342-8 (372-95) 

200-7 
A 10.19 342-7 47-9 

256-0 
208-1 
140-1 
94-1 

172-3 
115-9 
210-0 

172.2 
(172-25) 

200-7 

200-80 

B 343 • 0 469-6 
308-3 161-3 

108-7 
73-1 

373-2 
417-0 373-3 
343-9 (372-95) 

200-8 
A 10.45 342-75 35-0 

264-6 
229-6 
154-5 
103-9 

172-2 
17 13-5 

110-1 172-2 
214-0 (172-15) 

Readings in columns 3, 4, 5, 6, 7, 8 are in millimetres. 
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Table II (continued). 

Position. T. T.R. R. 
Ampli¬ 
tude. 

Z. Range. 
Mean 
range. A, At- 

Start Heat at 11.5. Stop Heat at 1.5. 

°C. 
A 2.5 343 • 0 46-8 

257-0 
210-2 
141-8 

172-3 
180 

115-2 172-3 
210-7 

yo ■ o 
(172-0) 

201-2 
B 343-2 480-8 

302-0 178-8 
120-0 
81-0 

373-8 
173 

422-0 373-6 201-2 
341-0 (373-2) 

~ 201-2 
A 2-27 342-95 51-2 

253-7 
117-5 

202-5 
136-2 
91-5 

172-3 
172-2 

166 

209-0 (172-0) 

°C. 
13-1 

Headings in columns 3, 4, 5, 6, 7, 8 are in millimetres. 

fifth column shows the amplitude of swing. The next column has the rest position 

(Z) calculated from the formulae 

z = e_t-6)2_ =J+ _0*_ 
(a — b) + (c — b) (c — 6) + (c—d) 

where a, b, c, d, are the readings in order in column 4. These formulae are based 

on the supposition that damping is so small that the successive amplitudes may be 

considered to be in geometric progression. The numbers in brackets in column 6 

denote the mean value of Z corrected for the change, if any, in the reading of the 

reference mirror. The seventh column shows the range, i.e., the corrected scale 

reading when passing from A to B position or vice versa. The eighth column has 

the temperature of the lead spheres as given by mercury thermometers. The last 

column shows the temperature of the outside of the vacuum tube below the window, 

as given by a platinum thermometer. The change in temperature varies up and down 

without much connection with the temperature of masses, M, M. Likewise the 

change of temperature in the water leaving the water-jacket amounts to 0'25° C., 

due mostly to change in temperature of the tap water. These small changes some¬ 

times up, sometimes down, cannot influence the general result. As a rule the water 

temperature is very steady for long periods. After a set of readings at low 

temperature, the thermometers are removed from the lead spheres and the nichrome 
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heating coils are substituted. When, after say two hours, the lead spheres are at a 

high temperature, the thermometers are again substituted for the coils, so that for 

the set of hot readings all the conditions are exactly the same as for the cold readings, 

201-3 

201-2 

201-1 

If 
£ 
c 
w 201-0 
UJ 

O 
Z 

< 
cz 

200-9 

200-8 

Fig. 13. Graph for Table II. The crosses show the first series of readings, the numbers being in order. 

The circles show the second series. 

except as regards the raised temperature in masses M, M. A graph is given for the 

result. The effect is 
+ 1-2/1 05 per 1° C. 

Table TIL is another instance. It differs in some details from the preceding table. 

In particular, the fourth column consists of only two entries at each A, B position. 

These are two consecutive extreme scale readings. Call them a, b. Then if Z be the 

rest position, we have, supposing geometrical progression in the amplitudes, 

2_ad b 

1 + d 

where d — decrement (i.e., ratio of one swing to the preceding one). 

The value of d is found independently before or after the experiment. The method 

used here has several advantages over the usual method of taking three or more 

extreme scale readings, viz. :— 

(1) The experiment is shortened. It may be very tedious when, as here, each half¬ 

swing takes 160 secs., and the whole series lasts 6 to 8 hours. 

(2) It is important when the large spheres are hot that they should remain as 

short a time as possible at any one part of the vacuum tube. We reduce the time of 

rest at any place by this process to about two-thirds of the least time possible by any 

other means. 

2 

20° 40° 60° 80° 100° 120° |40° 160° 180° 
T EMP. ( Cent i grade). 
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Table III.—August 21, 1915. Silver Balls (mm.). Lead Spheres (M, M). Vacuum 

Pressure 14 mm. Oscillation Period 280 minutes. 

Position. T. T.R. R. Z. Range. 
Mean 
range. eL. 9lt. ^HT- 

° c. ° C. ° c. 
B 11.55 853-7 402-7 

313-9 
349-6 

175-45 

18 

A 353-7 71-4 
243-2 

174-15 

175-60 
B 12.7 353-7 464-0 

273-0 
349-75 

175-45 

175-50 • 13-5 13-5 

A 353-7 85-6 
233-9 

174-3 

175-45 
B 12.18 353-7 442-6 

287-4 
349-75 18 

Heat for 35 minutes. 

B 1.37 354-15 407-7 
311-0 349-9 

(349-45) 
175-55 

88 13-5 

A 354-15 75-4 
240-8 

174-35 
(173-9) 

175-75 175-65 

86 

B 1.47 354-15 436-9 
291-8 

350-1 
(349-65) ■ 

175-70 

84 

A 354-2 80-9 
237-15 

174-35 
(173-95) 

83 13-5 

Heat for 30 minutes. 

B 3.36 354-6 410-4 
311-0 

350-95 
(350-05) 

176-2 

216 

A 354-6 77-3 
240-5 174-85 

(173-95) 
175-9 175-95 

210 13-6 

B 354-5 443-0 
288-6 350-65 

(349-85) 
175-75 

206 13-5 

A 3.53 354-5 83-4 
236-3 174-9 

(174-1) 

202 

Readings in columns 3, 4, 5, 6, 7 are in millimetres. 
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Table III. (continued). 

Position. T. T.R. R. Z. Range. Mean 
range. oL. 

Heat for 90 minutes. 

B 4.27 354-55 436-7 
292-8 350•65 

(349-8) 

A 354-6 81-7 
273-3 174-7 

(173-8) 

B 354-55 440-1 
291-0 350-95 

(350-1) 

A 354-55 84-0 
236-0 174-9 

(174-05) 

Heat for 30 minutes. 

0TT- onr. 

• C. 
215 

•c. ‘C. 
13-8 

176-0 
211 13-5 

176-3 176-1 
206 

176-05 ► 

B 5.30 354-6 415-0 
307-5 

350-7 
(349-8) 

175-95 

233 

A 354-6 76-9 
240-5 

174-75 
(173-85) 

175-95 175-9 

227 

B 354-5 438-5 
291-5 

350-6 
(349■8) 

175-7 

222 

A 354-5 81-8 
237 • 4 

174-9 
(174-1) 

216 

Heat for 40 minutes. 

A 6.48 354-1 75-9 
240-9 

174-6 
(174-2) 

175-8 

246 13-6 

B 354 ■ 1 436-4 
292-6 350-4 

(350-0) 
175-95 

242 

A 354-05 72-6 
242-8 ' 

174-4 
(174-05) 

175-95 

175-95 
237 13-6 

B 354-0 452 • 7 
281-5 

350 • 3 
(350-0) 

176-0 

231 

A 354-0 88-0 
232-3 174-3 

(174-0) 

224 

VOL. CCXVI.-A. 

Readings in columns 3, 4, 5, 6, 7 are in millimetres. 

3 F 
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Table III. (continued). 

Pause. 

Position. T. T.R. R. z. Range. 
Mean 
range. A- H

 

A
 

Pauf 3e. 

° c. •c. 
B 8.55 353•25 442 • 2 

287-1 
349•45 

(349-9) 
175-5 

143 13-7 

A 353 • 3 71-7 
242-7 

174-0 
(174-4) 

139 

B 353-3 444-1 
286-0 

349-55 
(349-95) 

175-7 

175-65 
136 

A 353•35 85 • 5 
173-9 

Zoo o (174-25) 
175-8 

B 353•35 445 • 6 
349-7 

130 
ZoD ‘ o 

(350•05) 

0„T. 

B 11.7 353-5 424-0 
299 • 5 349-55) 

90 

(349-75) 
175-75 

A 353-5 79-7 
237-1 

173-8 
(174-0) 

175-75 

175-75 
88 

B 353-5 439*3 
93Q • O 

349-55 
(349-75) 

Readings in columns 3, 4, 5, 6, 7 are in millimetres. 

There are no temperatures for water shown in this table. Long experience shows 

that the temperature of the outflow remains sufficiently steady, and the scale readings 

settle down provided the water has been set running abundantly for an hour or two 

previously. The rate of flow of water remains constant, say 5 litres/minute, 

throughout the whole experiment. A graph is given of results in Table III. The 

temperature effect works out as 

a = + 1'3 x 10-5 per 1° C. 

The above three examples given are among the most extensive and successful taken. 
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The process in the three differs in important respects and the conditions differ as 

to («) vacuum pressure; (b) sensitiveness; and (c) lagging. 

£ 

£ 
c 

liJ 

o 
2 
< 

CC 

20° 40° 60c 80° 100° 120° 140° 160“ 180° 200° 220° 240° 

T £ M P. ( Centigrade). 

Fig. 14. Graph for Table III. The first three crosses show rising temperatures, the nest three are for 

temperatures high but variable, and the two circles are for falling temperatures. 

Out of a total of many scores of experiments eighteen are summarised in Table IV. 

A great number of experiments have failed because the conditions were unsuitable ; 

for instance, the apparatus may be changed in the attempt to gain accuracy 

or to apply some test—but this change produces, sometimes, results which are 

non-cyclic. Or, a new vacuum pressure may be tried, which is unsuitable, the 

torsion system getting out of control through convection or tremors. In a few cases 

small negative temperature effects have been found, but in every case the results have 

been non-cyclic ; for instance, a negative effect when temperature rises may be 

followed by a positive effect when it falls again. The net result for both rise and fall 

is found invariably to be a positive effect. But it is non-cyclic and is considered 

worthless. These negative effects are due to strain and change in position of the 

parts of the apparatus and have always been removed by proper care. 

In Table IV. the high value +I'8xl0~5 and the low value 0'5xl0_o occur and 

are included in finding the arithmetic mean, which might be considered to be 

vitiated by their presence. But it is noteworthy that the longest and best 

experiments give results about +l'2x 10“5 which agree with the mean result and so 

tend to confirm it. 

3 f 2 
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Table IY.—Summarised Results of Several Experiments. 

Date. 
Range at 

15°. 

Greatest 
temperature 

rise. 

Range at 
highest 

temperature. 

Effect for 
r C. 

Comments. 

8 C. 'Chains and cylinders. 
June 23,1914. . 57 ■ 60 150 57-70 + 1-1 x IO-5 (See Table I.) 

_ Pressure = lp. 

May 24, 1915 . . 201-9 185 202-5 + 1-6 x10-5 
„ 26, 1915 . . 209-2 200 209-6 + 0-9 x 10-5 

July 14, 1915 . . 200-8 135 201-5 + 0-9 x 10~5 )>Pressure = 2 mm. 

„ 16, 1915 . . 200-8 180 201-35 + 1 - 4 x 10-5 J 
„ 24, 1915 . . 200-8 150 201•35 + 1-8 x 10-5 Pressure = 4 mm. 

Let in air to 
14 mm. pressure. 

July 27, 1915 . . 200•85 160 201-25 + 1 - 2 x10~3 (See Table II.) 
August 4; 1915 . . 200-8 160 201-2 + 1 • 3 x10~5 

„ 5, 1915 . . 196-3 140 196-5 + 0-8 x IO-5 

8, 1915 . . 193-45 180 193-95 + 1'3 x10-5 
„ 10, 1915 . . 193-25 180 193-9 + 1-6 x10~3 

12, 1915 . . 175-45 190 175-75 + 0-9 x10-5 
„ 18, 1915 . . 175-45 210 173-75 + 0-9 x 10-3 
„ 19, 1915 . . 175-55 220 176-15 + 1 - 5 x10~5 

Demagnetise 
balls. 

August 21, 1915 . . 175-5 200 175-95 + 1 -3 x 10~5 (See Table III.) 
„ 22, 1915 . . 199-5 200 199-7 + 0’5x 10-5 
„ 24, 1915 . . 201-25 210 201-65 + 1-0 x10~5 
„ 25, 1915 . . 190-75 230 191-2 + 1 • 1 x 10-5 

Rotate M, M 
by 180°. 

August 30, 1915 . . 185-7 150 186-2 + 1-7 x10“* 

Mean effect . . . . j + 1-2x10 5 

The readings in columns 2, 4 are in millimetres. 

It will be observed that the vacua used vary from 1 p. (for chains) down to the low 

vacuum 14 mm., which proved most satisfactory when tried for spheres, and was 

used always afterwards. 

VII. Tests Applied. 

We have now proved that there is a temperature effect which repeats itself 

with as much consistency as can be expected in a delicate apparatus, where 

the effect observed is only O'o mm. of scale reading. But this effect need not be 

a gravitation/temperature effect, but may be wholly or in part due to systematic 
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errors in the work. The results are, of course, as the tables show, outside the 

range of observational error; but the delicate torsion system would be very 

susceptible to spurious effects, due directly or indirectly to the heat in the large 

masses, M, M. The steps taken and the tests made to weed out spurious effects 

will now be indicated. 

In §IV. above some likely sources of error have been mentioned, and special 

precautions were taken against them in designing the apparatus. There are some 

other troubles possible, mostly mechanical. 

(1) The vacuum tube containing the torsion system and spheres, m, rn, hangs from 

steel springs, and is steadied in every direction by a set of rubber corks separating it 

from the wooden frame carrying the large masses, M, M. The bottom of the vacuum 

tube is steadied and can be adjusted by four horizontal set-screws; these screws 

being set in a metal frame supported from the cement floor of the room. The large 

masses are separately supported by a stout scaffold. Suppose the position of M, M. 

relative to the small spheres, m, m, is ideal, i.e., central and symmetrical. If rn, rn 

were now to move in the plane containing M, M, the sensitiveness of the system 

would increase—the telescope readings would change ; whereas, if they moved in a 

perpendicular sense the sensitiveness would decrease and telescope readings would 

change in the contrary sense. It is important, therefore, that during an experiment 

no movement of either mass system, e.g., due to warping of the framework, should occur. 

Thus the supports should be rigid and screened from heat. 

(2) The rubber corks, mentioned above, must be maintained firmly in place. 

(3) It is possible that the masses, M, M, might be hung under strains by the 

copper wires, and when heating occurs this strain might vary. This possibility was 

tested (and found non-existent) by turning both masses, M, M, by 180° C. on a 

vertical axis, as in the last experiment in Table IV. 

(f) The centre of mass of the spheres, M, M, might be displaced vertically by 

expansion as temperature rises. This movement would decrease the couple, due to 

M, M, on the torsion system, supposing the centres of M and m lie exactly in a horizontal 

line. The masses, M, M, are carried by copper discs (see fig. 9) attached to copper rods 

which pass through holes in the masses. The radius of each mass is 10 cm. Thus, 

when temperature rises 200 C. we have the centre of mass rising 2'8 x 200m = 560m, 

due to expansion of the lead; and falling 3’2 x 200m = 640,u, due to expansion 

of copper (the coefficients of the two materials being 28xl0-6 and 16xl0~ri 

respectively). The net fall in the centre of mass would then be 80m- Now the large 

masses, M, M, are 150 mm. from, the small ones, rn, m, and the small cosine error 

resulting from the vertical movement 80m, will be found negligible. If, however, due 

to error in setting, M and rn are not on a horizontal level, but that the former be 

5 mm. above its ideal position (an error of setting which is most unlikely) we should 

then find that the fall in the lead would give an effect of order 10~5, which is 

negligible compared with our effect of 2 x 10~3. 



DR. P. E. SHAW ON THE NEWTONIAN CONSTANT OF 386 

(5) If the temperature of the quartz torsion fibre rises during the experiment, its 

rigidity will change and the telescope readings will be affected. 

In Table III. the indicated temperature change in column 9 is 0'2C C. from 

beginning to end of the experiment. There is reason to think that this change is 

almost entirely due to heat getting into the thermometer above the water cooler 

where it would not affect either the torsion fibre or the lower part of the suspension. 

But suppose for present purposes we allow a temperature rise of 0'3° C. Fuzed 

quartz has temperature coefficient — lxl0~4; thus the fibre would be stiffened by 

0'3xl0-4. Our temperature effect is 20xl0~4. So we see that this error maybe 

considered negligible numerically and it acts in the wrong direction. 

The following list comprises the sources of error mentioned here and in § IY. The 

first four are due to heat entering the vacuum tube, the last six to the effects of heat 

on the masses, M, M, and other parts external to the vacuum :— 

1. (Temperature change in fibre). 

2. (Convection). 

3. Radiometric pressure. 

4. Radiation pressure. 

5. (Electrostatic forces). 

6. Magnetic forces. 

7. (Movement of base of vacuum tube). 

8. (Movement of top of vacuum tube). 

9. (Rotation of M, M). 

10. (Rise or fall of M, M, due to expansion.) 

The numbers of this list enclosed in brackets have already been dealt with and 

may be considered to have been eliminated by precautions already indicated. Nos. 3 

and 4 may be grouped together as they will invariably act in conjunction ; thus we 

have two errors left to deal with. 

No. 6.—The susceptibility of purest lead is — 1 x 10~6; that of iron for weak (earth) 

fields is, say 10. Thus a trace of iron, 1 part in 1,000,000, would mask any magnetic 

effect of the lead. Commercial lead has traces of iron varying from 1/300,000 to 1 /5000 

according to the source.# Suppose the lead used for M, M is of the worst commercial 

quality. The spheres, M, M, each weigh 50 kilos, so that a rod of iron 20 cm. long- 

weighing 10 gr. should have a greater magnetic influence than the presumed iron 

impurity in the lead. I placed iron rods of this mass in each sphere, and found the 

spheres, thus loaded, acted appreciably in the same way, as regards temperature effect, 

as when unloaded. Thus the temperature effect 011 the susceptibility is negligible. 

We have so far considered only the large spheres, M, M ; but it is evident that if 

the small spheres, m, m, are quiteun magnetised, the susceptibility of M, M would be 

immaterial. Separate tests were therefore made on the magnetism of m, m, and these 

* See Thorpe’s ‘ Dictionary of Applied Chemistry.’ 
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teats may be considered crucial. Curiously, it was found that though these were the 

purest silver obtainable from Messrs. Johnson, Matthey and Co., they were both in 

slight degree permanently magnetised. This is in itself an interesting fact. The 

torsion system used here is, in this case, a most sensitive magnetometer and when a 

N. pole of a bar magnet was brought outside the vacuum, slightly above one silver 

sphere, it repelled it, the corresponding scale reading being 4 mm. ; whereas when 

the N. pole was below, there was a like attraction. This permanent magnetism was 

removed with some difficulty by the passage of a current through a coil round the 

vacuum tube, until at last the scale reading was reduced to the small amount of 

0'2 mm. for each sphere. Thus the permanent magnetism was reduced to l/20th of 

its former amount. Several days later the spheres, m, m, were again tested and were 

found to remain demagnetised. Probably the permanent magnetism was originally 

produced when the heating coils round the vacuum tube were excited during 

production of the vacuum. (See § VI., paragraph 9.) 

The above demagnetisation of m, m occurred on date 20th August, 1915, after 

which, as is seen from Table IV., several full experiments were performed yielding 

results similar to those found before demagnetisation. From this one may deduce 

that magnetisation does not influence our gravitation/temperature effect. 

Nos. 3 and J.—These are taken last, their effect being the most difficult of all 

errors to dissect out from the net result. No calculation can be made of the forces 

set up due to their action since we do not know the amount or distribution of the 

supposed irregular heating on the inner face of the vacuum tube. The apparatus 

was designed and fitted up to avoid these errors to the utmost. There are a great 

number of layers of cotton wool, paper and flannel both inside and outside the helical 

water-jackets. Also extra screens were in some cases arranged to keep heat from the 

vacuum tube. The water passing through the water-jacket was steady in temperature 

for long intervals ; any small rises in temperature due to the source would, in a long series 

of experiments, pair off against similar falls. The water flowed at a great rate, say, 3 

to 6 litres/minute. It is hard to believe that any heat from the thickly-lagged lead 

spheres could penetrate the water-jacket and cotton wool under these conditions. 

But one can never be sure, without special tests, that heat will not find some joint 

or weak spot in the lagging and so reach the vacuum tube somewhere. If the inside 

of the vacuum tube were warmed irregularly we might have radiometric pressure 

effects ; but even then one would expect no change in the range (see Table II., 

column 7), but rather a removal of the same range up or down the scale. The special 

tests applied were : — 

(a) The tap water was heated before entering the helix "and it was found that a 

change in telescope readings occurred at first, but that when the temperature became 

Steady, though raised, the readings became normal. 

(b) More and yet more wrappings were put over the helixes, so that weak places, if 

any existed, would be covered up. It will be observed that the numbers in column 2, 
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Table IV., vary for spheres from 209 to 175. This is due to the fact that as more 

wrappings are used, the masses, M, M, can he swung through less angle ; hence the 

range is reduced. Thus we have some eight degrees of wrapping indicated in the 

above table. 

(e) The outer layer of cotton wool was covered with tin-foil, and several experiments 

were performed in which the parts of the helix coverings, near the hot spheres, M, M, 

were sprayed with tap water every two minutes. The experiments on dates 18th 

August, 1915, and 19th August, 1915, in Table IV., were conducted thus. In this 

way the helix coverings remain cool always. 

Seeing then that similar results are obtained under all these varying conditions as 

to temperature and conductibility of the surface of the central tube containing the 

vacuum, it seems permissible to state that the effect observed is not attributable to 

radiometric pressure or other forces due to the entrance of heat through the walls 

of the vacuum tube. A further reason why radiometric pressure should be counted 

out is that like effects have been found for vacuum pressures varying from 2 mm. 

to 14 mm., so that the corresponding radiometric pressures, if existing, would drop 

in the ratio about 5 to 1. Yet Table IV. shows no material difference in the 

results throughout these changes. 

In like manner, none of the other possible errors, scheduled above, seem capable of 

giving the observed temperature effect. So, unless some other error has been over¬ 

looked or some agency, at present unknown, comes into play, we must conclude that, 

at least for lead there is a temperature effect of gravitation. The plotted results in 

fio-s. 13 and 14 do not lie on smooth curves. But it will be observed that the scale © 
of ordinates is very open. 

Still, provisionally, the foregoing numerical results have been worked out on the 

basis of a linear relation, 
f = G (l+aO) Mm/d2 

Where a is a temperature coefficient of amount 

+ 1‘2 x 10-5 per 1° C. 

It will be observed that my results overlap the weight experiments of Poynting 

and Phillips (§ I., 3) for range of temperature 20° C. to 100° C. I cannot speak 

with any certainty as to the effect in my apparatus for this small range. If the 

effect be linear, the scale movement would be under 0‘2 mm., i.e., too small an amount 

to be sure about. But the effect may increase much faster than temperature, in which 

case one could not expect to observe any result for a range 20° C. to 100° C. It 

must also be remembered that (as stated in § II.) these experiments are not strictly 

comparable with the weight experiments, and so, for various reasons, we see that the 

two results, which appear to differ considerably, do not necessarily clash. No other 

investigations on the subject have yet been made. 
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VIII. Conclusion. 

1. Technical Summary and Suggestions.—As the experimental work has been long 

and troublesome, it may not be out of place here to summarise the more important 

technical difficulties met and overcome. To perform this research it has been found 

necessary :■—- 

(1) To obtain a sealing material for making joints between a quartz or metal fibre 

and any metal including aluminium, so that the joints should stand a temperature of 

160° C. and considerable load. No wax would do, and no ordinary solder with flux, 

but the alloy of 88 Zn/l2Sn acted perfectly.# In the final experiments a quartz 

fibre, 15p. diam., was attached thus to brass above and silver below, the load being 

seven gm. (which is little short of the breaking load). This stood for seven months 

though subjected to lateral shock and long-continued temperature of 130° C. 

(2) To realise a system of a delicate torsion balance in a high vacuum, provided 

with an optically true window. After long trial a wax of high melting point was 

found for fastening the two windows, but, of course, no wax is vapour-free when 

heated. Yet heating is essential for the production of high vacua. The joints 

containing the wax had, therefore, to be carefully treated in the preparation of the 

vacuum. 

(3) To test the quartz fibres. These fibres, while splendid in torsional qualities, 

are most uncertain as to-tensional strength. Systematic testing was therefore always 

adopted. 

(4) To damp out tremors in a delicate, torsion system in a high vacuum while 

leaving the main (torsional) oscillation free. None of the many known methods of 

damping is here permissible. But if a chain be suspended from the torsion beam, its 

links provide rolling friction at every tremor and the damping is excellent. Without 

this chain method, such measurements as these with high vacua would appear to be 

impossible under the conditions of the experiment. 

(5) To guard a delicate torsion system from external vibrations so as to make it 

useable even in a large city. The apparatus, heavily loaded with lead, was suspended 

by steel springs and steadied on all sides by rubber bungs. The vault in which the 

experiments were made is immediately under a workshop. Yet with this system, 

continuous readings could be taken even when the lathes and anvil were in use. 

Again, the movement of the heavy masses, M, M (total weight 100 kilos.) throughout 

the experiments, caused no trouble. 

No doubt these investigations will be repeated and extended. In the general 

design I cannot suggest any improvement. The final form I used, which in type 

resembles that originated by Prof. C. V. Boys, worked excellently and was sensitive. 

I have long felt that the greatest defect, or rather weak spot, in the apparatus lies in 

* See Shaw, “Sealing Metals,” ‘ Proc. Phys. Soc.,’ January, 1912. 

VOL. CCXVI.—A. 3 G 
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the window, which necessitates a break in the water-jacket system to allow light to 

enter the window and return to the telescope ; and though an elaborate system of 

wTater helix and lagging is provided in the window region (not fully shown in any 

figure) one feels that here there is a joint in the armour through which heat may 

enter. The ideal vacuum tube would have no front window on the wall of the tube. 

The light from the scale would enter the top window and pass by two totally 

reflecting prisms to and from the mirror back to the telescope. The optical difficulty 

in realising this plan would no doubt be great, but if it were possible we should have 

the great advantage of a continuous water-jacket, without joints, from end to end of 

the vacuum tube. 

Suppose, however, the ideal arrangement could not be made to work, one seems to 

have only one alternative if the window defect, above indicated, is to be minimised. 

This alternative is to reduce the bore of the vacuum tube to, say, 36 mm., and the beam 

to, say, 25 mm. The window would be reduced proportionally and it might then be 

possible to have a continuous water-jacket with a small slit opening at the window. 

In reducing the beam as just suggested we should have the further advantage of 

reducing the period of oscillation to one half. Sensitiveness would be slightly lessened, 

but spurious heat effects, if any, would be greatly reduced. 

2. General Summary.—I. It has been found possible :—(a) to obtain consistent 

cyclic readings in a gravitational experiment of the Cavendish type, even though the 

large masses are maintained for hours above 200° C., while the small masses remain at 

ordinary temperature ; (b) to carry on this investigation in the centre of a city at any 

time by day or by night, in spite of the attendant tremors and the special disadvantage 

of having' the torsion balance in a vacuum. 

II. The conclusion reached is that there is a temperature effect of gravitation. 

When one large mass attracts a small one, the gravitative force between them increases 

by about .lj'500 as temperature of the large mass rises from, say, 15° C. to 215° C. 

At present the result is provisionally stated as being +l'2x 10~5 per l C. ; but the 

readings are not steady enough to justify the statement that there is a linear relation 

for G/0. It. seems possible that time may be a factor in the effect; but the net result 

has not been shaken by a long series of tests. 

III. The above result, though new, is not entirely unsupported by other experiments, 

for previous gravitation experiments give indirect evidence of a positive temperature 

coefficient . The weight experiments of Poynting and Phillips, which yielded negative 

results, are not strictly comparable with mine. 

IV. As a bye-product of these experiments, it was found that silver balls of the 

highest purity, after being heated to 130° C. and placed in a strong magnetic field, were 

permanently, though weakly, magnetised, and that the coercivity was considerable. 

This is probably due to residual iron, see § VII. 6. 

V. Several technical troubles overcome during the research are summarised 

above. 
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For much general assistance from friends and colleagues, during the progress of this 

work, I gladly acknowledge my indebtedness. All the readings have been taken by 

myself; but on many occasions during the preparation of the apparatus, I have 

received most willing aid in various ways. To the many who have thus assisted me 

in accomplishing the present work I wish to record my thanks. I am also much 

indebted to Messrs. Baird and Tatlock, Hatton Garden, E.C., for great help in glass 

blowing. 

This investigation could not have started nor continued without considerable 

expenditure on apparatus. At the kind suggestion of Prof. W. H. Heaton, the 

Council of University College, Nottingham, made a generous grant at the outset, 

eight years ago ; while Prof. E. H. Barton has greatly helped by his unquestioning 

supply of material. 

Finally, I wish to acknowledge my obligation to Prof. C. V. Boys and the late 

Prof. J. H. Poanting for kind advice at the commencement of the work. 

\JSfotes added April 25, 1910.—Since the reading of this paper two possible sources 

of error, in addition to those in the table above (p. 386), have been suggested :—- 

I. As temperature rises, the air surrounding the spheres, M, M, will decrease in 

density, so that the total gravitative pull felt by the torsion system, due to the 

external system, will be reduced. 

Let p be the mean density of lead and lagging and let p be the mean air density. 

The effective large mass is really M(l—p'/p). Both lead and air expand, and we 

must calculate (a) the mass of cold air displaced by the expanding lead ; (b) the mass 

of air expelled from the field by expansion of air shells round the lead. 

Under the first head. Lqt the sphere have radius r and expand to (r + cfr), with 

rise of temperature 0°. The mass of the air shell displaced is, calling /3 its coefficient 

of expansion, 
4-7rr2. (<b'). p 

= 47rr2 (V/30) p 

— l/l4 gm., approximately. 

But M = 50,000 gms., so the proportionate change in the attraction due to this 

cause would be 1/700,000. This is negligible. 

Under the second head. Suppose, as an extreme case, a shell of cold air equal 

in volume to the lead were removed from the field by expansion ; the mass of this 

would be 1/9000 of the mass M. • This also is negligible, since the temperature effect 

observed is 1/500. 

II. With the high temperature of the lead spheres (250° C.) considerable convection 

currents would 'be set up round them, even when lagged. 

In the region where the spheres are close to the tube, the air velocity might be 

very much larger than on the outer regions ; and, as a consequence, difference of 
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pressure would be called into play, pushing the suspended spheres towards the tube 

and therefore increasing the actual attraction on the suspended small balls. 

Let a be the temperature effect as found in this research, and let dr be the actual 

displacement accounting for it, on the above supposition, we have 

hence 

As 

we have 

n Mm 
Or. —— . a 

r 
2G. dr. 

dr = ar/2. 

r — 15 cm., a = 0'002, 

dr — 0‘015 cm. 

If the mass M have weight W, and hang at distance l from the supports, the force 

required to produce this movement (dr) is 

W. dr/l = 5*5 gm. weight. 

In discussing this hypothesis of greater convection on the inner side of the mass M 

we should notice that the vacuum tube is surrounded by a water screen at about 

11° C., so that one would expect the inner side of the sphere to be colder, not hotter, 

than elsewhere, and the push on the sphere due to convection differences would be 

outwards, not inwards. 

Suppose, however, that through some cause there is greater convection on the 

inner side of M. By applying Bernoulli’s theorem we can calculate what velocity 

is required to give the calculated push of 5*5 gm. weight. 

Let v0, v be convection velocities on the outer and inner sides of the sphere ; and 

let p0, p be the corresponding pressures ; and let d be tire air density. We have 

V2~Vq _ Po~P 
2 d 

The effective area (i.e., the total resolved area of the sphere on which the pressure 

difference, p0—p, acts horizontally) would be not more than 75 cm2. Then taking 

v0 = 0 we find v — 380 cm./sec. If, however, we take v0 — 100 cm./sec. we find 

v = 360 cm./sec. It is fair to assume that v0 lies between 0 and 100 cm./sec. 

Thus the upward velocity of a broad column of air on the inner side of the.sphere 

would have to be some 370 cm./sec. to account for the observed effect. This velocity 

is enormous. Even if the large value of 37 cm./sec. were assumed the error introduced 

would be only 1 per cent. 

In a recent paper by H. A. WiLvSON# we find it stated that the velocity of a bunsen 

flame is only 300 cm./sec. So, even supposing there were proved to be excess 

convection on the inner side, we have no reason to think that it would introduce 

a calculable effect.] 
* ‘ Phil. Trans.,’ A, 1915, vol. 216, p. 71. 
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VIII. The Combining Volumes of Hydrogen and Oxygen. 

By F. P. Burt, D.Sc., and E. C. Edgar, D.Sc., 

Senior Lecturers in Chemistry in the University of Manchester. 

Communicated by Prof. H. B. Dixon, F.R.S. 

Received December 2, 1915,—Read February 24, 1916. 

The measurement of the combining weights of hydrogen and oxygen has been the 

subject of so many researches of a high order of excellence that any fresh investigation 

of this fundamental constant must be submitted with considerable diffidence. 

Nevertheless, it must be noted that the results obtained by various observers differ 

appreciably. According to Clarke(1), the values obtained by Morley and Noyes, 

by reason of the accuracy of their methods and the close concordance of the individual 

determinations, outweigh the results of all other investigators. The atomic weight 

of oxygen being 16, that of hydrogen, according to Morley(2), is 1'00762, and 

according to Noyes(3), 1'00787. (Clarke, on Noyes’ data, prefers the value 

1'00783.) It is, further, a significant fact that the arithmetic mean of all determina¬ 

tions discussed by Clarke, lies between these two values, which differ by 1 part in 

4000. Both values are based on the gravimetric synthesis of water and are indepen¬ 

dent of a knowledge of the densities of the gases. 

A physico-chemical method of determining the relative molecular weights depends 

on the knowledge of the ratio of the densities, together with that of the combining 

volumes. 

The present uncertainty in the values of these two constants is probably greater 

in the case of the combining volumes. The classical researches of Morley have 

established the densities of hydrogen and oxygen within very narrow limits, and, 

according to Clarke, writing in 1910, Morley’s value for the ratio is to be preferred 

to any other. There are now, however, good reasons for believing the density of 

oxygen to be slightly greater than Morley’s value, perhaps by 1 part in 28,000, 

though no subsequent work has advanced a more probable alternative to his value for 

hydrogen. Comparatively few investigations on the combining volumes have been 

made; of these, the two most important are due to Scott and Morley respectively. 

The historic researches of Scott(4) led to a value of 2'00245—this value being 

increased by him to 2'00285, when the necessary corrections (in calculating from room 

temperature to 0°C.) were made for the difference in the temperature coefficients of 
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the two gases. Morley(5), by a less direct method, arrived at the value 2'00269. 

(Clarke, on Morley’s data, gives 2'00274.) A few experiments by Leduc(6) 

yielded a considerably higher figure, 2'0037, and later, 2'0034, whilst Rayleigh(7), 

from compressibility measurements, obtained the slightly lower value 2'0026. 

The agreement between the values of Scott and Morley is exceedingly close, but 

in view of the uncertainty of some necessary corrections in Morley’s work, there is 

some excuse for a further series of determinations in which the erases, before combina- 

tion, are measured at 0° C. and 760 mm. pressure, that is to say, under the conditions 

of the density determinations. By adopting this procedure any errors due to uncer¬ 

tainty in the temperature and pressure coefficients are eliminated. This is the object 

of the present research. 

The experience of previous workers shows that the chief difficulty presented by 

the problem is the preparation of the two gases in a state of purity. To ensure the 

absence of traces of foreign gases, in particular chemically inert gases such as nitrogen 

or paraffin hydro-carbons which cannot readily be removed by chemical re-agents, the 

most stringent precautions must be taken. In selecting a method for preparing a 

gas it is less important to secure a high initial state of purity than to avoid the 

introduction of substances that are afterwards difficult to separate ; the presence of 

a trace of nitrogen may be much more troublesome than a considerable quantity of 

carbon dioxide. Treatment of gases by strongly heated solids is often unsatisfactory, 

because, although a particular impurity may be eliminated, some other impurity may 

be acquired. 

In this investigation we have relied on physical rather than chemical methods for 

the ultimate purification of the gases. The case of hydrogen is peculiar in that it 

cannot conveniently be liquefied, but advantage may be taken of this very fact to 

separate impurities that are more readily condensible. 

We began this investigation in July, 1911, and completed the experimental work 

in July, 1915. The apparatus was set up in an underground cellar below the 

Schunck Laboratory, and this room was reserved exclusively for our use. 

Preparation of Hydrogen. 

The work of H. B. Baker has shown that very pure gas is obtained by the 

electrolysis of an aqueous solution of barium hydroxide, and this is the method we 

have adopted throughout for generating hydrogen. The electrolysis was carried out 

in a U-tube constructed of boro-silicate glass (fig. 1, A), fitted with electrodes of 

stout platinum foil, about 27 mm. square. The platinum wire seals at B and B were 

mercury cupped. The two limbs of the U-tube were sealed to the soda glass 

connecting tubes by means of a glass of intermediate composition. The extension of 

each limb was bent over to form a short manometer which dipped into mercury; these 

manometers could be closed by the taps, C, C. T-pieces at E and F conducted the 



THE COMBINING VOLUMES OF HYDROGEN AND OXYGEN. 395 

gases through the taps, G and H, to the drying trains. Before one of the manometers 

was sealed on, a hot saturated solution of Kahlbaum’s barium hydroxide, which had 

been four times re-crystallised by us, was filtered through glass wool into the U-tube ; 

the manometer was immediately sealed on, and electrolysis started, and then the 

vessel was exhausted by a water pump until the solution boiled. Finally, both 

hydrogen and oxygen were allowed to run to waste through the gauges for a 

considerable time, so as to complete the elimination of air. A large proportion of 

the hydroxide crystallised out on cooling, and partially dissolved again when the 

temperature rose owing to passage of the current. No partition or diaphragm was 

employed in the U-tube, as the subsequent treatment of both hydrogen and oxygen 

was designed to remove traces of the other gas. A current of about 1'5 amperes was 

used for electrolysis, and the solution was not allowed to get very hot. 

Purification of Hydrogen : First Method. 

The hydrogen from the electrolysis vessel, after passing through two drying tubes 

filled with calcium chloride, J, J, and two filled with Merck’s phosphoric oxide, K, K, 

entered the 2^-litre storage bulb, L, which was fitted with a 3-way tap. This bulb, after 

exhaustion by a water pump and a mercury pump, had had the last ti’aces of air 

3 h 2 
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removed by four hours’ exposure to charcoal cooled in liquid air. The storage bulb 

was connected to the U-tube, M, containing charcoal. This tube had been 

prepared in the following way : ll'5gr. of charcoal, made from cocoa-nut shell, were 

introduced into the tube in fragments the size of a pea. The tube was exhausted by 

a water pump, and then heated in a glycerine bath to a temperature of 240° C. Dry 

hydrogen was next admitted and then pumped out again, and this operation was 

repeated several times. Finally, the tube was exhausted at 240° C. and sealed off. 

When cold, dry air was admitted, and the tube was immediately sealed to its connec¬ 

tions on the apparatus. The observations of Dewar (8) and, more recently, of Claude (9), 

indicate that, in the absence of helium and neon, exposure of hydrogen to charcoal 

at liquid air temperatures should prove a very efficient method of removing other gases. 

Hydrogen itself is absorbed to a considerable extent. According to the measurements 

of Claude, 100 gr. of charcoal, cooled to —195°'5 C., can take up about 20 c.c. of 

hydrogen before the pressure reaches a tenth of a millimeter of mercury. Five litres 

of nitrogen ai’e required to produce a similar pressure, whilst oxygen is still more 

readily absorbed. When cooled in liquid air and put in connection with the 2|--litre 

storage bulb, containing hydrogen at atmospheric pressure, the 11‘5 gr. of charcoal 

in our U-tube reduced the pressure to about half an atmosphere. By closing the 

storage-bulb tap and admitting hydrogen from the electrolysis vessel and drying train 

through the cross-tube, N, the charcoal vessel was rapidly filled to atmospheric pressure. 

Electrolysis was then continued until sufficient hydrogen had been passed over the cooled 

charcoal to charge the measuring vessel. The liquid air vessel was then removed and 

part of the gas from the charcoal was allowed to return to the storage bulb. The later 

fractions were removed by the mercury pump, the train being exhausted at the same 

time. In this way impurities which had been retained by the charcoal were prevented 

from accumulating in the system. A cross-piece, O, carrying a tap connected the 

two limbs of the U-tube so that the train could be pumped out by another path in 

addition to that through the charcoal. A mercury gauge, P, recorded the pressure 

of gas in the system. 

Purification of Hydrogen: Second Method. 

The gas was dried, as before, over calcium chloride and phosphoric oxide, but, in 

some series of determinations, passed first through a tube containing palladium black 

to remove oxygen. After leaving the drying train the hydrogen was made to pass 

through the walls of a heated palladium tube (fig. 2, A). This tube, 10 cm. long, 1 cm. 

in external diameter, and having a wall thickness of about 0'6 mm., was welded to 3 cm. 

of platinum tube of similar dimensions. The platinum was sealed to a glass tube, B, 

which, in its turn, was fused as an inserted join into a wider tube, C, connected at its 

other end with the drying train. The wide tube thus formed a cul-de-sac into which 

the blind end of the palladium tube projected backwards. A short cylinder of quartz 

was slipped over the palladium tube and wound with a spiral of platinum wire, the 
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terminals of which made contact with stout platinum hooks sealed through the glass 

of the outer tube. By passing a current through the wire the palladium could be 

heated to any desired temperature. 

The junction between the thick platinum tube and the glass was an excellent piece 

of workmanship carried out by Baumbach, the University glass-blower; it was quite 

free from air-bubbles and absolutely gas-tight. For a year and a half it has been 

constantly heated and cooled, and no sign of a crack has ever appeared. 

The three palladium tubes used in this work were obtained from Messrs. Johnson 

and Matthey. The first tube was made from forged sponge ; the second and third 

from fused metal. The third tube (the one figured in the diagram) contained 0'5 per 

cent, platinum and a trace of rhodium which were deliberately left in with the idea of 

increasing its mechanical rigidity. The weight of palladium in the second and third 

tubes was about 26 gr., but the third tube, the dimensions of which have already 

been stated, was made about twice the length and half the wall-thickness of the 
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second. The tube prepared from forged sponge showed a marked tendency to become 

crystalline and develop cracks, and for this reason was soon discarded. We have to 

express our indebtedness to Messrs. Johnson and Matthey for the great trouble they 

took in preparing tubes that would satisfy our requirements. 

Before admitting hydrogen it was necessary to make certain that both the palladium 

itself and the glass-platinum junction were perfectly gas-tight. The palladium tube 

was evacuated by means of the mercury pump while the drying train was left full of 

air at atmospheric pressure, and the apparatus was allowed to stand overnight. In 

the morning the mercury gauges at D and E indicated no alteration in pressure on the 

two sides of the system, nor could any gas be obtained from the pump. After the 

palladium tube had been strongly heated, the vacuum still held. The drying train 

was now exhausted at the T-piece, F, and the palladium heated to a much higher 

temperature than was ever afterwards reached in the actual determinations. The 

train was then washed out with hydrogen, and this operation was repeated till all air 

was removed, when the T-piece, F, was sealed off. 

Sometimes difficulty was experienced in “ activating ” the palladium. This could be 

effected by heating in vacuo, by heating in hydrogen, or, perhaps most surely, by 

heating in air. Once activated, the palladium remained in this condition throughout 

our experiments. The superficial film of oxide formed by heating in air disappeared 

when hydrogen was admitted. All the tubes used by us were permeable to hydrogen 

even in the cold, but the rate of passage of the gas was exceedingly slow. No move¬ 

ment of mercury in the gauges could be detected by eye, and equilibrium was only 

established after ten or twelve hours when the initial difference of pressure on the two 

sides of the system was as great as half an atmosphere. 

In order to obtain hydrogen in the requisite quantities, the following procedure was 

adopted :—Electrolysis was continued until the pressure of hydrogen in the palladium 

was nearly atmospheric; if the palladium was heated at once, almost all the gas was 

evolved from the surface at which it had entered ; if twenty-four hours were allowed 

to elapse before heating, hydrogen was evolved freely at both sides of the system. By 

keeping the metal at a temperature of 100 C. during charging, the process of diffusion 

was greatly accelerated. The required quantity of gas was obtained by heating to a 

temperature of 180° C. ; after the expulsion of about 300 c.c., the metal was at once 

recharged at a lower temperature. 

When the palladium was allowed to cool, the mercury in the gauge, E, rose 

rapidly to atmospheric height, and then fell very slowly till its level was the same as 

in the gauge, D. The life of the tube was certainly prolonged by keeping the 

palladium fully charged with hydrogen, and by using only a gentle heat to expel the 

gas. In order to obviate waste of gas through the gauge, D, a 2^-litre storage bulb 

was attached to the train immediately after the electrolysis vessel. The palladium 

was protected from the action of mercury vapour by plugs of fine gold wire at G 

and H. 
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The last palladium tube used in this work was set up in January, 1914. During 

the following seventeen months, 20 to 30 litres of hydrogen passed through it. On 

June 1st, 1915, it was deprived of hydrogen as completely as possible by heating and 

pumping off the gas. Air was then admitted to the drying train by the T-piece, F, 

and the apparatus was left over a week-end. When examined again not a trace of 

gas could be found in the pump.- The air in the train was next replaced by nitrogen 

and the palladium was heated for five and a half hours continuously by the maximum 

current used in the actual determinations, with the same negative result. Finally, 

after the apparatus had remained for six weeks with nitrogen at atmospheric pressure 

outside the tube, the interior was still vacuous. 

Preparation and Purification of Oxygen: First Method. 

Oxygen was first prepared by electrolysis of barium hydroxide solution in the 

U-tube already described. The gas, after being dried over calcium chloride (fig. 1, 

Q, Q), and phosphoric oxide, R, Id, entered the 2|--litre storage bulb, S, till this was 

filled to atmospheric pressure. The storage bulb had been previously exhausted in 

the same manner as the hydrogen bulb. On immersing the small fractionating 

tube, T, in freshly made liquid air, more than a litre of oxygen could be withdrawn 

from the storage bulb over the phosphoric oxide in the tube, V, and condensed 

as a liquid. If desired, the storage bulb could then be re-charged by continuing 

the electrolysis, and a further quantity of gas could be condensed in T. About 

one-third of the liquid oxygen was allowed to escape into the air through the 

gauge, W, so as to eliminate traces of hydrogen or other low-boiling impurities. The 

next fraction was taken for the determination. A portion of the residue was returned 

to the storage bulb and the last fractions were boiled away into the air. The gas 

finally remaining in the apparatus was removed by the pump. 

Second Method. 

Oxygen as prepared above might possibly contain traces of hydrogen, though the 

solubility of this gas in boiling oxygen is certainly very small.* 

It was deemed advisable, therefore, to make oxygen by some other method which 

could not conceivably yield hydrogen as an impurity. Gas generated by heating 

potassium permanganate should fulfil this condition, and was consequently employed 

to check the results obtained with electrolytic oxygen. 

Each of the four tubes, A, B, C, D (fig. 3), was charged with 250 gr. of finely 

powdered crystals of “ pure ” potassium permanganate in a dust-free atmosphere. The 

permanganate in the fifth tube, E, was three times re-crystallised from boiling water. 

The final crystallisation and subsequent drying were carried out in the decomposition 

tube itself. We may mention here that there was no difference in the results 
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whether oxygen was made by heating this tube or one of the other four. The mouths 

of the five tubes were plugged with carefully cleaned glass wool. 

From the generating tubes the oxygen passed through a series of three washing 

towers filled with glass beads. 

The first tower, F, contained a moderately strong solution of caustic potash ; the 

second, G, a saturated solution of barium hydroxide. The column of liquid in each 

tower was over a metre in height. Between the barium hydroxide tower and the 

next washing vessel a manometer, H, was attached to the train. The short tower, J, 

F G 

contained a stronger solution of potash, and the U-tube, K, a very concentrated 

potash solution on pumice that had previously been heated in a stream of oxygen. 

From the U-tube, K, the gas passed through two tubes, L, L, containing sticks of 

caustic potash, and finally through two tubes, M, M, containing phosphoric oxide. 

The object of the two large alkaline towers was to retain oxides of manganese and 

carbon dioxide. The two tubes, J and Iv, containing potash of increasing concentra¬ 

tion, served to diminish distillation of water from the towers to the stick potash 

tubes. After the apparatus had been in use for more than two years there was no 

sign of deliquescence either in the solid potash or in the phosphoric oxide. 
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When the washing and drying train had been set up it was exhausted by a 

water pump from three T-pieces simultaneously at N, O and P. Each of the 

permanganate tubes was then heated in turn, the train being exhausted between 

each oxygen filling. When all air had been removed the T-pieces were sealed off. 

After leaving the drying train the gas passed through the tap, Q, to the fractionating 

tube, R, where it was liquefied. When a sufficient quantity of liquid had been condensed 

the tap, Q, was closed, and a portion of the liquid was allowed to boil off and escape 

through the gauge, S. The second fractionating tube, T, which had been previously 

exhausted, was now cooled in liquid air, and the 3-way tap, Y, was opened. On 

lowering the liquid air vessel from It a small quantity of liquid oxygen soon condensed 

in T. The 3-way tap was then turned so that the gas bubbled through its liquid. 

The object of this was to prevent superheating so that any higher-boiling impurities 

would be more effectively retained. A quantity of gas, washed by its own liquid, was 

allowed to escape by the gauge, W, or was removed by the pump. The next fraction, 

bubbled in the same way through its own liquid, was taken for the determination, and 

the residue in both fractionating tubes was rejected. 

The Measuring Apparatus. 

It may be taken as established by earlier workers that the ratio of the combining 

volumes is slightly greater than 2 when the gases are measured at normal temperature 

and pressure. Our procedure, in brief, has been to explode one volume of oxygen 

with rather more than two volumes of hydrogen, the variable and carefully measured 

excess over two volumes being sufficient in quantity to ensure, a residue of hydrogen 

being left after synthesis. The gases were measured consecutively in the same 

apparatus. By working with hydrogen in excess, the possibility of the formation of 

such substances as ozone, hydrogen peroxide, or oxide of mercury, should be diminished 

or eliminated. 

The final operation was to estimate the hydrogen residue, when the combining- 

volumes could be calculated. 

For measuring the gases at 0° C., and 760 mm. pressure, the method was the same 

as that used by Gray and Burt(10) for the volumetric analysis of hydrogen chloride. 

In fact, some parts of the original apparatus w'ere kindly lent to us by Dr. Gray. 

The measuring pipette (fig. 4) consisted of a thick-walled glass bulb, A, of about 

300 c.c. capacity, sealed to capillary tubes at either end of its vertical diameter. 

The lower capillary expanded into the dead-space, B, which was furnished with a 

glass point. The upper capillary, after a right-angle turn, led to the 3-way tap, C. 

The pressure of gas in the bulb was registered by the vertical distance between the 

mercury surface in the dead-space and the mercury surface in the upper chamber, D, 

of the manometer, which communicated with the dead-space as shown in the figure. 

The upper chamber of the manometer, of the same diameter as the dead-space* 

VOL. ccxvi.—a. 3 i 
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(1’6 cm.), was also provided with a glass point. The vertical distance between the 

glass points was very nearly 760 mm., and this distance was maintained constant by 

means of a stout glass rod sealed at its upper end to the manometer chamber and at 

its lower to the elbow of the capillary connecting the bulb and the 3-way tap. The 

whole apparatus was rigidly fixed to a heavy iron bar with a tripod base, and the top 

of the bar was clamped to a staple driven into the ceiling. Any displacement from 

the vertical could be detected by the plumb-line, E, E, and corrected by means of 

levelling screws in the tripod base. The manometer head communicated with a 

mercury pump through the tap F, and the phosphoric oxide tube, G, so that the vacuum 

could be verified from time to time. Sealed to the capillary between the bulb and 

the 3-way tap was a capillary T-piece expanding into a tube of a few cubic centimetres 

capacity, H, which terminated at its lower end in another capillary, furnished 

with a tap, J. This tube, which was normally filled with mercury to the top, may be 

conveniently referred to as the volume-adjuster, since the capacity of the pipette could 

be increased to a small extent by withdrawing mercury from the tap, J. 

The bulb, the volume-adjuster, and a portion of the manometer tube were enclosed 

in a tinned-iron bath with a stout brass base. The upper portion of the manometer 

was also enclosed in a bath constructed of a wide glass tube closed at the bottom by 

a rubber cork through which the glass rod and manometer tube passed. The lower 

bath somewhat overlapped the upper, so that by filling both baths with melting ice 

the whole system could be cooled to 0° C., with the exception of the dead-space and 

a piece of the capillary above it and the short column of mercury in the manometer 

from K to L. 

On account of the difficulty of seeing the point it was inpracticable to surround 

the dead-space with ice. The small bath, M, was therefore filled with cooled brine by 

means of the funnel, N. It was found quite easy to secure a temperature within 0°'5 C. 

of zero when the final setting was made. Because of the small volume of the dead-space, 

(almost exactly 1 c.c.) a variation of this order did not affect the results. The mercury 

required for displacing gas from the bulb was contained in the reservoir, O. An air- 

catch, P, protected the pipette from any air leak at the rubber junction. 

Calibration of the Pipette. 

The volume of the bulb, dead-space, and connecting capillaries, from the tap, C, to 

the level of the glass point in the dead-space, was calibrated by means of mercury 

after the apparatus had been set up, but before the side tube leading to the manometer 

had been sealed on. For this purpose a stop-cock on capillary tubing was temporarily 

fused to the glass tubing below the dead-space. 

The dead-space was calibrated separately. Mercury was introduced through the 

stop-cock until the meniscus was set to the point, the dead-space and tubing below it 

3 I 2 
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being immersed in a water-bath so that the temperature of the mercury could be 

recorded satisfactorily. This mercury was run out and weighed. A mark was next 

made on the capillary just above the dead-space; mercury was introduced again to 

the level of the mark, and this quantity was run out and weighed. 

Weight of mercury from dead-space 
point to end of stop-cock. 

Temperature. Volume. 

gr- °C. c.c. " 
(1) 192-14 21-5 14-188 
(2) 192-17 20-5 14-188 
(3) 192-20 20-0 14-189 

Mean . 14-188 

Weight of mercury from mark on 
capillary to end of stop-cock. 

gr- 
(1) 205-76 21-5 15-194 
(2) 205-84 19-0 15-193 
(3) 205-90 18-0 15*195 

• 

Mean 15*194 

Therefore volume of dead-space = 15-194-14-188 = 1 -006 c.c. 

The pipette was now filled with mercury up to, but not including, the bore of the 

tap, C, and cooled to 0° C. with melting ice. Mercury was then run out from the tap 

to the mark on the capillary, care being taken that the initial and final temperatures 

of the warm mercury in the dead-space and tubing below it were the same. 

Weight of mercury from 3-\vay tap 
to mark on capillary. Temperature. Volume. 

gr- ° C. c.c. 
(1) 4160-03 0 305•986 
(2) 4160-09 0 305•990 

Mean . . 305-988 

Total volume of pipette = 305 • 988 + 1 • 006 = 306 • 994 c.c. 
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This value was checked by running out mercury in a single operation from the 

3-way tap to the dead-space point. 

Weight of mercury from 3-way tap 
to dead-space point. 

Temperature. Volume. 

gr- 

4173-36 | 

0 C. 
0 in bulb 

21 in dead-space 

c.c. 

J 306-996 

Mean total volume . 306-995 

For our purpose it was unnecessary to determine the volume of the pipette with 

very great exactness. Let the volume be represented by x, and let 2x + y be the 

volume of hydrogen that unites with x of oxygen. Then the ratio of the combining 

volumes is +-~ , where x is more than three hundred times as great as y. A change 

of 0'5 c.c. in the value of x alters the ratio by only 1 part in 400,000. 

No sensible error is introduced, therefore, by calling the volume of the pipette 307 c.c. 

in round numbers. Again, there was no need to reduce the mercury weighings to 

the vacuum standard, since the small volume increments (represented by y) were also 

estimated by running out mercury which was counterpoised by the same set of weights. 

These weights were carefully compared with each other, but the deviations from their 

face values were far too small to involve a significant correction. 

Introduction and Measurement of the Gas. 

The exit tubes from the hydrogen and oxygen trains united beyond the taps, X and 

Y, at the T-piece, Q. The common channel then divided again, one branch leading to 

the mercury pump through the tap, It, and the other to the measuring bulb. After 

the large bath had been filled with powdered ice, gas was allowed to enter the pipette, 

displacing mercury into the reservoir, O, until the mercury surfaces in the dead-space 

and manometer chamber were approximately set to the two points. The tap, X or Y, 

as the case might be, was then closed. The ice in the large bath was pressed down 

and replenished, and the upper bath was also charged with ice. Finally, both baths 

were filled with ice-cold water, and the dead-space was cooled with brine. The fine 

adjustment was now made by means of the pressure-adjuster, S. By holding the 

small reservoir, T, at a suitable height and rapidly turning the tap, V, minute 

quantities of gas could be introduced into or withdrawn from the pipette. By the 

alternate manipulation of the pressure-adjuster and of the screws controlling a wooden 

clip which compressed the rubber tubing connecting the reservoir to the pipette, the 
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mercury meniscuses were set to their respective points. The tap, C, was then 

closed. 

In this manner a definite volume of gas at a temperature of 0° C. and a pressure of 

760 mm. could be obtained repeatedly. 

Transference and Synthesis. 

By raising the reservoir, O, and opening the tap, C, the gas in the pipette was 

made to pass through the capillary tube, W, into the explosion vessel, Z, which was 

filled with mercury. The end of the capillary inlet tube was fused as an inserted join 

through the base of the explosion vessel, and as the gas bubbled in, the mercury was 

displaced through the air-trap, a, to the reservoir, /3. The explosion vessel, about a 

litre in capacity, consisted of a wide glass cylinder, 22 cm. long and 8 cm. in diameter, 

drawn out at its upper end to a narrow neck, 6 cm. long and 18 mm. in diameter. 

Near the apex of the neck two platinum electrodes were sealed through the glass, the 

portions of wire inside the tube being glass-covered nearly to their tips. A capillary 

tube leading to the 3-way tap, y, afforded exit from the explosion vessel. This tube 

remained full of mercury down to the top of the spark-gap during the entry and 

explosion of the gases. 

The explosion vessel was supported by a wooden pedestal screwed on to the bench. 

The top of the pedestal was roughly shaped to fit the base of the cylinder, the pressure 

being eveidy distributed by a packing of cotton wool. 

When one measured volume of hydrogen had been transferred to the explosion vessel, 

the pipette was filled again and the operation repeated. In order to secure a small 

excess of hydrogen, a few cubic centimetres of mercury were withdrawn from the 

volume-adjuster during one of the fillings, so as to increase the volume of the pipette. 

By weighing this mercury the excess volume could be accurately estimated. When 

about half the gas had been expelled from the pipette, the tap, C, was closed and the 

reservoir, 0, was lowered so as to reduce the pressure in the system. A crucible 

containing mercury was then brought up to submerge the capillary end of the volume- 

adjuster, and the tap, J, was opened until mercury rose to the level of the T-piece. 

The rest of the gas was then transferred. 

The connecting tubes between the pipette tap and the gas trains were now exhausted 

and washed out with oxygen, after mercury had been taken through the lower bore 

of the tap, C, to expel the small quantity of hydrogen imprisoned there. The pipette 

was then filled with oxygen and the measured volume of gas was transferred to the 

synthesis vessel in successive portions, the addition of gas being continued until the 

passage of a spark caused an explosion. In practice we found that 600 c.c. of hydrogen 

and 300 c.c. of oxygen could be united conveniently by admitting the oxygen in seven 

fractions. The pressure in the explosion vessel was kept nearly atmospheric until six- 

sevenths of the oxygen had been fired, but, before the final explosion, the reservoir, /3, 
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was lowered, since the mixture now approximated to electrolytic gas, and there would 

have been some risk of shattering the vessel. 

The small residue of wet hydrogen was compressed into the neck of the explosion 

vessel and sparked for a few moments. In order to collect any gas bubbles caught 

between the mercury and the glass, the reservoir, j3, was lowered until most of the 

mercury had left the cylinder. A paper cone, mounted on a split cork, was fitted 

round the neck of the explosion vessel, and charged with a mixture of acetone and 

solid carbon dioxide. The water rapidly condensed as a film of ice on the walls of the 

neck, and, at the very low pressure in the vessel, the quantity of gas retained by the 

ice must have been negligibly small. When every trace of water had disappeared, 

mercury was allowed to rise to the bottom of the neck, and the dry hydrogen was 

sparked again for several minutes to eliminate any oxygen that might have escaped 

combination at the final explosion. Since any water vapour formed would at once be 

removed as ice, there was little chance of the reaction 2H2 + 02 = 2H20 being 

reversed. 

Measurement of the Hydrogen Residue. 

The tubing of the reservoir, (3, was now clipped, and the tap, y, turned to admit the 

dry hydrogen into the little pump, S. The mercury thread in the capillary was shot 

into the trap, e, and the gas passed to the pump through the tube, £, containing 

phosphoric oxide which had been distilled in oxygen, and the spiral, >?, which was 

cooled in liquid air. Any impurities condensed in this spiral could be pumped out and 

examined after all the hydrogen had been removed. The delivery tube of the pump, 

made of very fine-bore capillary was turned up and sealed as an inserted join into the 

small collecting vessel, 6. 

This vessel carried a 3-way tap, k, communicating on the one hand with the air, and 

on the other with the pipette by means of a capillary T-piece below the dead-space. 

The little pump was worked “ tight,” and any gas bubbles adhering to the turned-up 

end of the delivery tube were liberated by lowering the reservoir, X. The pipette was 

now filled with hydrogen from the train, and a setting was made in the manner already 

described. As soon as the points were set the tap, C, was closed, and the hydrogen 

in 6 was driven over into the pipette by raising the reservoir, X, and opening the tap, k. 

The mercury in the dead-space was depressed, and the original pressure was recovered 

by withdrawing mercury from the volume-adjuster until both points were set again. 

From the weight of mercury taken out, the volume of the hydrogen residue could be 

calculated. 

At first sight, this method of measuring a few cubic centimetres of gas may appear 

needlessly cumbrous, but in actual practice we found it both convenient and accurate. 

It had this great advantage, that no new pressure standard, with its possibly attendant 

errors, was introduced ; the hydrogen residue was measured under precisely the same 

conditions as the gases before synthesis. 
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Removal of the Water. 

After the hydrogen residue had been pumped out of the explosion vessel the tap, y, 

was closed and the film of ice in the neck allowed to melt. On cooling the bulb, n, in 

liquid air and turning the tap, y, the water distilled slowly from the neck to the bulb. 

When the removal of water was judged complete, the tap, y, was closed and the clip 

on the tubing of the reservoir, /3, opened to allow mercury to fill the vacuous neck of 

the explosion vessel. The click with which the mercury thread in the capillary met 

the tap-barrel bore witness to the absence of gas or water-vapour. After each experi¬ 

ment the bulk of the water collected in /j. was removed by exhausting with a water 

pump at the T-piece, v, while the bulb was warmed with a flame. 

First Series of Determinations. 

Both gases were made by electrolysis : the hydrogen was purified by exposure to 

charcoal cooled in liquid air; the oxygen was liquefied and fractionated as described 

on p. 399. To ensure the removal of moisture from the glass surfaces, the trains were 

left exhausted for a month and then washed out with hydrogen and oxygen respec¬ 

tively. The measuring pipette, explosion vessel, and small pump were also washed 

out with hydrogen, and the pentoxide tube, £, was warmed during passage of the gas. 

To gain experience in manipulative technique, five preliminary determinations were 

carried out. Of the fourteen succeeding experiments, two (Nos. 8 and 9), were 

rejected. In these two experiments the normal procedure for purifying hydrogen 

was modified ; instead of passing a stream of the gas through the cooled charcoal 

U-tube into the pipette, we allowed the saturated charcoal to warm up, and took the 

first fractions of the gas expelled. The results obtained were much higher than any 

others in the series. 

The volume of oxygen taken for synthesis was 307 c.c. in all cases ; the volume of 

hydrogen was 614 c.c. + a small, variable excess. Column 1 of the following table 

gives this excess as determined by the weight of mercury withdrawn from the 

volume-adjuster in one of the two hydrogen fillings. Column 2 gives the volume 

of the hydrogen residue after explosion, as determined by the weight of mercury 

withdrawn from the volume-adjuster in the final setting. Column 3 gives the 

difference between the volumes in the first two columns, representing the excess over 

614 c.c. of hydrogen required to combine with 307 c.c. of oxygen. Column 4 gives 

the ratio of the combining volumes, and column 5, the atomic weight of hydrogen 

(0 = 16), computed from Morley’s value for the density ratio 
/ 1'42900 \ 

VO’089873/’ 

If R is the ratio of the combining volumes, and A the reciprocal of the density 

ratio, the atomic weight of hydrogen = 8RA, so that any error in either ratio implies 

the same percentage error in the atomic weight. 
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Table I. 

1. 

Hydrogen 
excess. 

2. 

Hydrogen 
residue. 

3. 

Difference. 

4. 
Ratio of 

combining 
volumes. 

5. 
Atomic weight 

of 
hydrogen. 

c.c. c.c. c.c. 
1 4-316 3-439 0-877 2-00286 1-00771 
2 4-072 3-140 0-932 2•00304 1-00780 
3 4-755 3-877 0-878 2-00286 1-00771 
4 4-271 3-366 0-905 2-00295 1-00776 
5 1-670 0-750 0-920 2-00300 1-00778 
6 5-717 4-844 0-873 2-00284 1-00771 
7 2-962 2-044 0-918 2-00299 1-00778 

10 2-202 1-309 0-893 2-00291 1-00774 
11 2-565 1-576 0-989 2-00322 1-00790 
12 2-605 1-699 0-906 2-00295 1-00776 
13 2-015 1-179 0-836 2-00272 1-00765 
14 3-231 2-340 0-891 2-00290 1-00774 

Mean .... 2-00294 1-00775 
±0-00002 

Maximum deviation, 1 in 4000 

In the first few rejected experiments a small quantity of gas was condensed from 

the hydrogen residue in the spiral, »?. This gas was measured in the calibrated 

capillary at the top of the collector, 6. In the first experiment it amounted to about 

10 c.mm., falling to 2 c.mm. to 3 c.mm. in the second. Throughout the rest of the 

series the quantity was less than 1 c.mm. This gas was most probably carbon 

dioxide, produced by combustion on the walls of the explosion vessel of traces of 

organic impurities which previous cleaning treatment had failed to remove. Since 

the capillary exit tube from the explosion vessel was always full of mercury while 

the gases were being combined, there was no possibility of the flame reaching the 

grease on the tap, y. 

Second Series. 

Hydrogen, generated as in series 1, was purified by passage through the walls of a 

palladium tube. 

Oxygen was made and purified as in series 1. 

After four or five determinations, yielding somewhat discordant results, a crack 

was discovered in the palladium tube. A new tube, made from fused metal, was then 

set up. Of the following twelve experiments, two (Nos. 5 and 11), were rejected ; 

No. 5, because, owing to an accident, the determination was interrupted in the 

middle, and only completed after an interval of several days ; No. 11, because the 

yol. ccxvi.—a. 3 K 
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accuracy of one of the settings was suspected at the time on account of the light 

being had. 

The five columns of figures in Table II. correspond to those in Table I. 

Table II. 

1. 

Hydrogen 
excess. 

2. 

Hydrogen 
residue. 

3. 

Difference. 

4. 
Ratio of 

combining 
volumes. 

5. 
Atomic weight 

of 
hydrogen. 

c.c. c.c. c.c. 
1 2-026 1-147 0-879 2-00286 1-00772 
2 3-331 2-440 0-891 2-00290 1-00774 
3 3-687 2-794 0-893 2-00291 1-00774 
4 2-233 1 • 359 0-874 2-00285 1-00771 
6 5-641 4-777 0-864 2-00281 1-00769 
7 3-871 2-960 0-911 2-00297 1-00777 
8 4-738 3-822 0-916 2-00298 1-00778 
9 3-926 3-000 0-926 2-00302 1-00779 

10 2-835 1-934 0-901 2-00293 1-00775 
12 2-958 2-062 0-896 2-00292 1-00774 

Mean .... 2-00292 1-00774 
±0-000014 

1 
Maximum deviation, 1 in 10,000 

Before the nest series of determinations the palladium tube, which was showing 

some signs of weakness, was cut down and sent away to be repaired. 

Third Series. 

Hydrogen was made and purified as in series 2, except that on leaving the 

electrolysis vessel it passed through a tube containing palladium black. Oxygen was 

obtained from potassium permanganate as described on pp. 399—401. 

At this stage of the research we had a great deal of trouble owing to the appear¬ 

ance of condensible gas in the hydrogen left after explosion, accompanied by 

discrepant and much lower results. The quantity of gas condensed in the spiral, >/, 

varied Irorn 40 c.mm. to nearly 300 c.mm. in different experiments. It was completely 

soluble in a drop of potash or baryta solution, giving a white precipitate in the latter 

case. The source of the impurity was at first believed to be the oxygen generated 

from permanganate, since all other conditions were apparently the same as in 

series 2, but liquefaction and fractionation of much larger quantities of oxygen 

produced no improvement. 
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Any impurities accompanying the oxygen must have been sufficiently volatile to 

escape condensation in the fractionating tubes. To test whether oxygen could 

I’etain or acquire carbon dioxide, as such, after leaving the fractionating train, a 

considerable volume was pumped through the cooled spiral, >7. Nothing was retained 

by the spiral. Kammerling Onnes(u) has shown that, at the boiling point of oxygen, 

the vapour pressure of carbon dioxide is about 6 x 10-6 mm. of mercury, so that little 

could escape condensation when exposed to a large surface of glass cooled in liquid 

air. It seemed just possible that oxidation of dust in the permanganate tubes might 

give rise to carbon monoxide, a gas about as difficult to separate from liquid oxygen 

by fractional distillation as nitrogen would be. Some experiments carried out by 

Mr. J. N. Greenwood indicate that if 

any carbon monoxide is present in perman¬ 

ganate oxygen, the quantity is less than 

1 part in 40,000 by volume, even when no 

precautions are taken to avoid the presence 

of dust in the decomposition tube. a 

We next considered the possibility of 

impurities in the explosion vessel. There 

was no question of grease finding its way 

back from the tap, y, because mercury and 

gas travelled always in the opposite direc¬ 

tion. The pipette tap was separated from 

the explosion vessel by more than half a 

metre of capillary tubing in which there 

were several bends. Any grease carried by 

a mercury thread through a tap-bore is 

usually deposited in the first few centi¬ 

metres of connecting tube. In order to 

obviate any possible risk of contamination 

in this way, the device illustrated in fig. 5 

was adopted. Two vertical capillary tubes, A and B, were sealed to the transference 

capillary at C, as close together as possible : A was provided with a tap, and B was 

connected with a mercury reservoir, D, through an air-trap, E. The tube, B, had 

no tap, but the flow of mercury through it was controlled by a screw-clip on the 

reservoir tubing. 

All mercury that passed through the pipette tap was withdrawn by the tube, A. 

At the end of the process of transferring gas from the pipette to the explosion vessel, 

the mercury thread following the gas through the pipette tap and along the capillary 

was checked at C. The gas remaining in the capillary between C and the explosion 

vessel was then driven over by clean mercury from the reservoir, D. 

To remove any grease that might have previously found its way there, the 

3 k 2 
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explosion vessel itself was cut down and drastically cleaned by consecutive treatment 

with stannous chloride and strong hydrochloric acid, and a hot solution of chromic 

anhydride in fuming nitric acid. After the acid had been washed out, the final 

content of distilled water was replaced by dust-free air drawn in over cotton-wool. 

The vessel was then dried at room temperature in a stream of air passed over calcium 

chloride and filtered through cotton-wool. 

On continuing the determinations, condensible gas was still found in the hydrogen 

residue. The only sources of impurity yet to be examined was the hydrogen. A 

glass spiral was inserted in the train between the palladium tube and the pipette, 

and cooled in liquid air during the filling. A small quantity of gas was condensed in 

the spiral, and the amount of impurity in the hydrogen residue was diminished, 

though not entirely eliminated, by this treatment; facts which at once suggested a 

flaw in the palladium tube. The tube was accordingly cut down and examined, and 

a crack was discovered. The phosphoric oxide in the drying trains had not been 

distilled in oxygen, and was probably the source of contamination. It is of interest 

to note that hydrogen passed over impure phosphoric oxide apparently contains some 

carbon compound which is not condensed at the temperature of liquid air ; perhaps 

carbon monoxide. A new palladium tube, the third described in the preface, was 

procured and set up, and in the following series of determinations, the amount of 

condensible gas in the hydrogen residue was absolutely negligible. In some 

Table III. 

1. 2. 3. 4. 5. 

Hydrogen 
excess. 

Hydrogen 
residue. Difference. 

Ratio of 
combining 

Atomic weight 
of 

volumes. hydrogen. 

c.c. c.c. c.c. 
1 3-213 2-323 0-890 2-00290 1-00773 
2 3-116 2-221 0-895 2-00292 1-00774 
o O 3-990 3-092 0-898 2-00292 1-00775 
4 3-128 2-240 0-888 2-00289 1-00773 
5 2-630 1 • 754 0-876 2-00285 1-00771 
6 3-424 2-521 0-903 2-00294 1-00776 
7 2 ■ 495 1-584 0-911 2-00297 1-00777 
8 3-247 2-341 0-906 2-00295 1-00776 
9 3-573 2-655 0-918 2-00299 1-00778 

10 2-552 1-675 0-877 2-00286 1-00771 

Mean . 2-00292 
±0-00001 

1-00774 

1__ 

Maximum deviation, 1 in 14,000 
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experiments in this series, a very large quantity of oxygen was liquefied and 

fractionated ; in others, only just enough for the purpose. The concordance was 

better than in series 1 and 2, the maximum deviation among ten consecutive 

determinations being less than 1 part in 14,000. 

The means of series 1, 2 and 3 differ by only 1 part in 100,000. The final mean, 

taking into account the probable error of each series, is 2'00292, with a probable error 

of less than ±4 parts in 1,000,000. The corresponding atomic weight for hydrogen 

is 1'00775. Since the oxygen was obtained from two totally distinct sources, and the 

hydrogen, though always derived from the electrolysis of barium hydroxide, was 

purified by two essentially different methods, the close agreement of the means of the 

three series suggests that the purity of the gases reached a high standard. Before 

accepting these values, however, it was necessary to consider the possibility of 

systematic errors inherent in the methods employed. One such constant error had 

already been detected. When a measured volume of gas was displaced from the 

pipette by mercury, a small bubble was always trapped in the dead-space, at the 

region of insertion of the glass point. Since, after the expulsion of the second 

hydrogen filling, oxygen was admitted without first washing out the pipette, the 

oxygen was contaminated with this small quantity of hydrogen. This implied 

a corresponding deficit of oxygen, the nett result being an excess of hydrogen 

in the residue after explosion equal to three times the volume of the original 

bubble.* 

By closing the pipette tap after removal of the gas, and lowering the reservoir, O, 

this bubble escaped into the vacuum so formed, and could be measured in the 

pipette capillary which was calibrated for the purpose. From a number of 

measurements with both hydrogen and oxygen the volume of the imprisoned bubble 

proved to be remarkably constant. As a mean of six experiments, agreeing to within 

1 c.mm.,this volume was found to be 6'5 c.mm., when corrected to normal temperature 

and pressure. This implied an excess of 19'5 c.mm., in the hydrogen residue, which 

would make the ratio of the combining volumes (and the atomic weight of hydrogen) 

too low by 33 parts in 1,000,000. The alteration involved was much smaller than 

the variations among the individual determinations, but the correction was justifiable 

since it was constant both in magnitude and sign. The corrected values for the final 

means become 2'00299 and 1'00778. 

Fourth Series. 

To test the validity of this correction we proceeded to carry out a further series of 

determinations in which the imprisoned hydrogen bubble was removed before the 

introduction of the oxygen. 

* The final hydrogen filling, which was contaminated in a similar way with a trace of oxygen, was 

removed by the mercury pump at the end of each determination. 
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Hydrogen was prepared and purified as in series 3 : oxygen was obtained both by 

electrolysis and by heating permanganate, so that large quantities of gas were 

rapidly available for fractionation. Electrolytic oxygen, accumulated from time to 

time in a 2|--litre storage bulb, entered the main train at the T-piece (Z, fig. 3), after 

being dried over calcium chloride, and phosphoric oxide. 

In this series, and in the preceding one, an attempt was made to measure the 

temperature of the mercury in the short exposed portion of the manometer column 

that projected below the bath (K to L, fig. 4). For this purpose, a small thermometer, 

graduated in tenths of a degree, was fastened by fine copper wire to the manometer 

tube, and the whole was wrapped in cotton-wool. The temperature registered by 

this thermometer was probably proportional to, if not identical with, the temperature 

of the mercury in this region of the manometer. The readings varied with the room 

temperature and length of time during which the system had been in ice. The main 

controlling factor was the temperature of the room. Since the distance between the 

two glass points to which the mercury meniscuses were set 

was constant, any rise in temperature of the mercury in the 

manometer implied a diminution of pressure and corresponding 

increase in volume of the gas in the pipette. An empirical 

value for the temperature effect was obtained by filling the 

pipette with gas, making a setting and noting the tempera¬ 

ture of the thermometer, and then repeating the measurement 

when the temperature was a degree or so higher. From the 

weight of the few drops of mercury that had to be withdrawn 

from the volume-adjuster to set the points on the second 

occasion, it was possible to estimate the increase in the volume 

occupied by the gas per unit rise of temperature as registered 

by the thermometer. 

The mean of several very concordant results was 21 c.mm. 

per degree. Now the length of the exposed portion of the manometer was about 

4 cm., and a change of 1° C. in the temperature of this length of mercury could not 

produce so large an effect. In fig. 6 the two columns of mercury, AA and BB, only 

equalise each other when their temperature is the same. All this region was packed 

in cotton-wool, the tubing below the dead-space being the more thickly coated. The 

mercury in A would be more sensitive to temperature changes than the larger bulk 

of better insulated mercury in B, so that part of the measured effect may have been 

due to relative temperature change in this part of the system. 

In any case, the effect on the results is very small, since the room temperature 

seldom varied half a degree during a determination. The application of the correction 

to the results of series 3 improves the concordance a little without altering the 

mean. 

In series 4 the temperature variations were greater. In order to protect the 

Fig 6 
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apparatus from the warmth of the observer’s body, a sheet of asbestos was fastened 

in front of the manometer and tubing below the dead-space, with the result that the 

cooling effect of the ice-baths above came more into play, and the temperature 

registered by the thermometer was lower the longer the system had been in ice. 

Consequently the hydrogen fillings, which were made first in the day, contained 

relatively too little gas. The result of applying the correction to series 4 was to 

lower the mean by 1 part in 50,000. 

The following table gives the results of series 4 : two additional columns, 6 and 7, 

give the values for the ratio and the atomic weight when the small correction is 

applied. 

Table IY. 

1. 

Hydrogen 
excess. 

2. 

Hydrogen 
residue. 

3. 

Difference. 

4. 
Ratio of 

combining 
volumes. 

5. 
Atomic 

weight of 
hydrogen. 

6. 
Ratio of 

combining 
volumes. 

7. 
Atomic 

weight of 
hydrogen. 

c.c. c.c. c.c. 
1 2-443 1 • 527 0-916 2-00298 1-00778 2-00300 1-00779 
2 3-717 2-827 0-890 2-00290 1-00773 2-00284 1-00771 
3 2-846 1-903 0-943 2-00307 1-00782 2-00299 1-00778 
4 3-589 2-614 0-975 2-00318 1-00787 2-00305 1-00781 
5 3-453 2-507 0-946 2-00308 1-00783 2-00309 1-00783 
6 3-311 2-410 0-901 2-00293 1-00775 2-00288 1-00773 
7 3 • 895 2-945 0-950 2-00309 1-00783 2-00306 1-00781 
8 2 • 945 2-015 0-930 2-00303 1-00780 2-00301 1-00779 
9 2-015 1-052 0-963 2-00314 1-00785 2-00307 1-00782 

10 3-448 2-521 0-927 2-00302 1-00780 2-00310 1-00784 

Mean. . . . 2-00304 1-00781 2-00301 1-00779 
±0-00002 ±0-00002 

Mean deviation, 1 in 7000. 

The mean value of the ratio in column 6 differs by only 1 part in 100,000 from the 

final mean of the first three series when this is corrected for the imprisoned bubble. 

It may be noted in the above table that without experiments 2 and 6 the 

maximum deviation in column 4 is 1 part in 10,000, and in the corrected values in 

column 6, only 1 part in 18,000. 

The explanation of the two low results is to be found in another temperature error 

which affects all four series. The final setting of a determination had sometimes been 

repeated on the following day, with the object of testing the accuracy of the measure¬ 

ment. On such occasions it was noticed that the volume of gas in the pipette had 

apparently increased, unless the bath had been iced for some time before the reading 

was made. It was therefore necessary to make a careful investigation of the time 
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needed for temperature equilibrium to be established after ice had been put in the 

pipette bath. The problem was attacked in two ways : in the first place, we made a 

series of measurements of the gas in the pipette on consecutive days, the interval of 

time between the introduction of ice and the setting being decreased from day to day. 

The volume expansion corresponding to these time intervals was obtained from the 

weight of mercury that had to be taken from the volume-adjuster in order to set the 

points. 

In the second place, the pressure change of the gas in the pipette was measured at 

constant volume by making a setting a short time after the introduction of ice, and 

then, keeping the lower mercury meniscus set to the point in the dead-space, 

measuring the increase in distance between the upper meniscus and its point with 
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lapse of time. This was done with a reading telescope, fitted with a Hilger 

micrometer eye-piece. The two methods yielded concordant results which were 

checked at a later date by a large number of similar measurements made with a 

cathetometer. In fig. 7, volume change in cubic millimetres is plotted against the 

time, in hours, during which the bulb had been in ice, and the resulting curve 

indicates that nearly three hours were required to establish temperature equilibrium.* 

Now each complete determination occupied from twelve to fifteen hours and was 

carried through in two consecutive days. The normal procedure was to measure and 

* The unexpectedly long time taken by the gas to attain temperature equilibrium may have been due 

to the fact that the base of the bulb was supported by a small rubber cork which protected the glass over 

a small area from direct contact with the ice. 
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combine the gases on the first day and leave the wet hydrogen residue safely 

imprisoned between mercury surfaces in the explosion vessel over night. The 

residual hydrogen was measured on the following day. The order of operations at 

the beginning of each day was identical. First of all the pipette was cooled with ice ; 

then hydrogen was admitted, the upper bath iced and a setting made. During the 

rest of the day the ice in the pipette bath was never removed, but was pressed down 

and replenished immediately before each reading. On the second day, as soon as the 

first hydrogen setting was accomplished, the residue in the explosion vessel was dried, 

sparked and transferred to the pipette ; the ice in the baths was then replenished and 

the final setting was made. The last two measurements, therefore, were separated 

by a considerable interval of time. Of the five gas measurements required in each 

determination, only two, namely the first of each day, fell within the three-hour 

period preceding the establishment of equilibrium. Consequently, in both these 

measurements the quantity of hydrogen actually taken was less than the quantity 

assumed in the calculation. The error in each case makes the result too high. 

The accurate evaluation of the correction involves a knowledge of the time 

interval between the introduction of ice and the completion of the setting. Although 

the time had always been noted when a setting was made, the same precaution 

had, unfortunately, seldom been taken at the moment of iceing the bulb. There 

was little variation, however, in the time occupied by the intermediate operations, 

which in series 3 and 4 had become almost mechanical. In series 3, the most uniform 

as regards method of procedure, and the most concordant in results, the time interval 

as actually measured in several determinations was one and three-quarter hours, and 

the mean time for the whole series was certainly within a few minutes of this. 

It may be seen from the curve (fig. 7) that when the bulb had been in ice for an hour 

and three-quarters, the volume of the gas was still 18 c.mm. in excess of its final value, 

so that had the measurement been delayed till contraction was complete, an additional 

18 c.mm. of gas must have been introduced to achieve the setting. Since the calculation 

is based on this assumption, the nominal volume of hydrogen taken for synthesis 

must be diminished by 18 c.mm., and, by parity of reasoning, the nominal volume of the 

residue must be increased by the same amount. The net result is a diminution of 

36 c.mm. in the volume of hydrogen required to combine with 307 c.c. of oxygen. This 

implies a reduction of 6 parts in 100,000 in the values for the ratio and the atomic 

weight. 

In series 4, an attempt to estimate the above time intervals for each individual 

experiment led to the same ayerage reduction. In experiment 6, for example, the 

oxygen measurement, instead of being made at the end of the first day when the bulb 

had been in ice for many hours, was made on the following morning. The tempe¬ 

ratures of the oxygen and hydrogen were therefore more comparable, and the resulting 

correction was small. In several of the other determinations the correction was larger 

than in series 3. As regards series 1 and 2 a similar correction was necessary. The 

3 L VOL. CCXVI.—A. 
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time interval in question was in most cases rather greater, since the hydrogen took 

longer to obtain. On the other hand, the correction for the imprisoned bubble was 

probably a little smaller. The presence of this bubble had escaped observation in the 

early part of the research, owing, perhaps, to the fact that the mercury in the pipette 

was very clean and therefore trapped a smaller quantity of gas.# With long continued 

use and contact with rubber tubing, inevitable slight fouling occurred.t 

That the average volume of the imprisoned bubble was increasing very slightly 

during the later stages of the research, was proved by actual measurement. Both 

these opposing errors may therefore have been smaller in the earlier series. Taking 

into account the very close agreement of the means it seemed fairest to apply the same 

“ contraction ” correction throughout, and to reduce the means of all four series by 

6 parts in 100,000. Collecting all the results we have :— 

Series 1. j Series 2. Series 3. Series 4. 

2-00294 2-00292 2-00292 2-00301 
±0-00002 +0-000014 + 0-00001 ±0-00002 

Corrected for imorisoned bubble . 2-00301 2-00299 2-00299 2-00301 
Corrected for “ contraction ”. . . 2-00289 2-00287 2-00287 2-00289 

The arithmetic mean of the ratios in the last line is 2'00288, and the corresponding 

atomic weight of hydrogen is 1'00772. 

Fifth Series. 

Since the magnitude of the “ contraction ” correction was a little uncertain, a fifth 

series of determinations was undertaken. In this series no measurement was made 

until the pipette had been in ice for at least three hours. The gases were made and 

purified exactly as in series 4, and the trapped hydrogen bubble was removed before 

the oxygen filling. To eliminate variations in the temperature of the mercury in the 

exposed portion of the manometer, a small subsidiary bath, constructed of the two 

halves ot a short brass cylinder, mounted on a split cork, was fitted to the manometer 

tube in this region. This bath was filled with powdered ice immediately before each 

reading was made. By a modification of procedure on the second day the two final 

settings were made one immediately after the other so that there was no need to re-ice 

the baths. As soon as the first setting was finished, the hydrogen residue, previously 

accumulated in the collector, was at once admitted, and the necessary adjustment made 

by running out mercury. Of the thirteen experiments in this series, one, No. 6, was 

* Before its introduction into the apparatus the mercury was purified from foreign metals by distillation 

and by washing with mercurous nitrate solution, and was finally dried by heating to 120° C. 

f The tubing used was of a special kind designed to resist attack by mercury. 
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rejected. In this experiment, when the tap on the explosion vessel was opened to 

admit the hydrogen residue to the pump, the mercury thread in the capillary beyond 

the tap broke up into a series of globules which settled down and obstructed the 

passage of the gas. To remove them it was necessary to heat the capillary strongly 

with a flame, and since the glass in this region was contaminated with tap-grease, 

some chemical action may have occurred. 

Table V. 

1. 

Hydrogen 
excess. 

2. 

Hydrogen 
residue. 

3. 

Difference. 

4. 
Ratio of 

combining 
volumes. 

5. 
Atomic weight 

of 
hydrogen. 

c.c. c.c. c.c. 
1 3-428 2-575 0-853 2-00278 1 •00767 
2 3-461 2-585 0-876 2-00285 1 •00771 
o 
o 3-080 2-219 0-861 2-00280 1 •00769 
4 3-131 2-242 0-889 2-00290 1 •00773 
5 3-078 2-176 0-902 2-00294 1 ■00775 
7 3-222 2-351 0-871 2-00284 1 •00770 
8 3 • 855 2-986 0-869 2-00283 1 •00770 
9 4 • 339 3-429 0-910 2-00296 1 •00777 

10 3-160 2-274 0-886 2-00289 1 •00773 
11 3-000 2-090 0-910 2-00296 1 •00777 
12 3-155 2-268 0-887 2-00289 1 •00773 
13 3-141 2-276 0-865 2-00282 1 •00769 

Mean .... 2-00287 1 •00772 
±0-00001 

Maximum deviation, 1 part in 11,000. 

The mean is practically identical with the corrected mean of the first four series, so 

that the estimate of the “ contraction ” correction is satisfactorily confirmed. 

Although, in this series, no uniformity of procedure was adopted as regards the 

distribution of the gas measurements over the two days, examination of the results 

reveals no discrepancies attributable to this cause. 

In experiments 1, 3, 9, 11 and 13, for example, the oxygen was measured on the 

afternoon of the first day, whereas in experiments 2, 4, 5, 8, 10 and 12, it was measured 

on the morning of the second day ; yet the mean result for each group is the same. 

Experiment 7 was completed in a single day. 

Except for the longer interval between iceing and setting, the presence of the small 

subsidiary ice bath on the manometer tube and the juxtaposition of the two final 

measurements constituted the only difference from series 4. The lower results of 

series 5 cannot be attributed to the presence of the little ice bath since the volume 

3 L 2 
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contraction curve was found to be the same whether this portion of the manometer 

was at room temperature or at 0° C. As the bath was used in every gas measurement, 

the effect of the resulting small increase in the quantity of gas required to fill the 

pipette cancels out. 

The possibility of a small error, due to the difference of procedure in the two final 

measurements, was suspected on theoretical grounds. Before admitting the hydrogen 

residue to the pipette, the mercury in the dead-space was always lowered to the level 

of the capillary T-piece at which the gas entered. The mercury immediately below 

the dead-space and at the same level in the manometer was cold owing to the brine 

and the ice baths respectively. The result of lowering the pipette reservoir, therefore, 

was to bring cold mercury into the tubing below the dead-space and into the lower 

part of the manometer. The glass in these regions was cooled and if, on raising the 

mercury again, temperature equilibrium was established more rapidly in the manometer 

tube (see p. 414), the points would no longer be set. Moreover, if these assumptions 

are correct, the effect should be greater the higher the temperature of the room. Now 

the room temperatures at the determinations in series 5, ranged from 11°'5 C. to 

13°*5 C., and averaged about 12 C. Examination of the experiments showed no 

connection between the temperature of the room and the value of the result. 

A series of blank experiments was then undertaken when the temperature of the 

room was between 17° C. and 18° C. A setting having been made, the mercury was 

lowered for a period comparable to that required for admitting the hydrogen residue 

in an actual determination. On raising the pipette reservoir again it was found that 

mercury had to be taken from the volume-adjuster in order to set the points. The 

mean volume of mercury withdrawn in four very concordant experiments was 30 c.mm., 

so that actual determinations carried out at this room temperature would have been 

1 part in 20,000 too low. The experiment was repeated at a room temperature of 16" C., 

when the volume of mercury withdrawn was only 10 c.mm. The inference is that, at 

the room temperatures obtaining in series 5, the correction would have been negligibly 

small, and this is confirmed by the above-mentioned fact that differences of 2° C. in 

this temperature region had no detectable influence on the results. It was unfortu¬ 

nately impossible to make blank experiments at these lower temperatures, unless we 

had waited for the winter. 

The error just discussed does not affect the first four series, where, after the hydrogen 

residue had been admitted, and a rough adjustment made by running out mercury, 

the ice in the baths was replenished before the final setting. During this time interval 

the normal temperature conditions of the mercury in the tubes below the dead-space 

level would have been established again. 

For the reasons mentioned in the preface an excess of hydrogen had been taken in 

all our experiments. It does not seem probable that any constant error would be 

involved by this practice, but the point was tested by carrying out a few determinations 

with oxygen in excess. 
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The preparation and purification of the gases and all subsequent precautions were 

the same as in series 5. 

First of all, exactly two volumes of hydrogen and one volume of oxygen were 

exploded and the small residue of oxygen measured. In three other experiments a 

slightly greater proportion of oxygen was taken. The volume of hydrogen was 

614 c.c. in all cases. The oxygen residue was estimated in exactly the same way as 

the hydrogen residue. It would have been more logical to fill the pipette with oxygen 

instead of hydrogen, which was selected because it was more easily procurable. On 

mixing 1 or 2 c.c. of oxygen with 300 c.c. of hydrogen, the resulting volume is not 

strictly additive, but the deviation, though not exactly determinable from existing 

data, is probably very small. 

In these four experiments a new phenomenon was observed. In each case, after the 

final explosion in which oxygen had been present in excess, brown stains were noticed 

on the walls of the explosion vessel. These stains were presumably oxide of mercury 

since they gradually disappeared when mixtures containing an excess of hydrogen 

were detonated in the vessel. If a significant quantity of oxygen was fixed in this 

way, the value of the ratio would be too low. It was a moot point whether it was 

advisable to spark the dried oxygen residue. Coward (12) has shown that, when the 

pressure is low, traces of uncoinbined hydrogen and oxygen remain after detonating 

electrolytic gas. On the other hand, sparking might lead to the formation of ozone. 

In one case the result would be too high ; in the other too low. The treatment in 

this respect was varied in the different experiments as follows :— 

Example 1. Example 2. Example 3. Example 4. 

0'5 mins., sparking. No sparking. 0'75 mins., sparking. 3 mins., sparking. 

It is significant that the result of experiment 2 was the highest. It should be 

mentioned here that nothing was condensed when the oxygen residue was pumped 

through the liquid-air-cooled spiral. In the following table columns 1 and 2 represent 

the surplus volume of oxygen taken and the residue of oxygen left after explosion, 

respectively. Column 3 gives the difference between the first two columns, repre¬ 

senting the volume by which 307 c.c. of oxygen must be diminished to be chemically 

equivalent to 614 c.c. of hydrogen. 

Without laying any particular stress on these results it may be claimed that they 

do not suggest the presence of a constant error in the earlier experiments. We 

therefore conclude that the ratio of the combining volumes of hydrogen and oxygen 

is represented with a high degree of probability by the figure 

2,00288 at 0° C., and 760 mm. pressure, 

which differs from the value of Scott by only 3 parts in 200,000. 
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Table VI. 

1. 

Oxygen 
excess. 

2 

Oxygen 
residue. 

3. 

Difference. 

4. 
Ratio of 

combining 
volumes. 

5. 
Atomic weight 1 

of 
hydrogen. 

c.c. c.c. c.c. 
1 0 0-428 0-428 2-00279 1-00768 
2 1 -533 2-021 0-488 2-00318 1-00788 
3 1-084 1-551 0-467 2•00305 1-00781 
4 0-508 0-933 0-425 2-00277 1-00767 

Mean .... 2-00295 1-00776 

Maximum deviation, 1 in 5000. 

Omitting experiment 2, mean . . 2-00287 1-00772 

Maximum deviation, 1 in 7000. 

The ratio may be calculated from compressibility measurements. If the com¬ 

pressibility coefficient of hydrogen at 0° C., between 0 and 1 atmospheres, is 

taken as +0'00054 (the mean of the values obtained by Rayleigh, Jaquerod 

and Scheuer, and Chappuis) and the corresponding coefficient of oxygen as 

— 0'000964 (Gray and Burt), then the ratio of the volumes containing equal 

numbers of molecules at N.T.P.is 
1 + Q-Q0054 

1-0-000964 
and the ratio of the combining volumes 

2 (1+Q. Q(jQof) = 2-00303 
t-0’000964 

Purity of the Gases. 

Provided that the source of the gas and the methods of purification are varied, the 

best criterion of purity is afforded by the concordance of the results. 

Neither of the gases, in the condition in which they left the trains, yielded any 

residue when pumped through a spiral cooled in liquid air. 

The liquefied oxygen left no residue on evaporation, and the results did not vary 

according to the fraction taken. Nitrogen might occur as an impurity owing to 

incomplete exhaustion of the trains, or to a faulty tap. In the first case the quantity 

would diminish throughout a series and, since the resulting error would not be 

constant, it could hardly escape detection. The taps on the apparatus were selected 
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with great care. They were mounted on capillary tube, and, in the case of the 3-way 

taps, had the two bores drilled diagonally and at right angles to each other. 

Experience has shown this to be the safest type for preventing leak. All taps through 

which gas passed were mercury cupped. The plugs were so finely ground that a very 

small quantity of grease sufficed to lubricate them, and they were kept well “ home ” 

in their barrels by means of rubber bands. When in use, the plug was turned through 

the smallest possible arc, a precaution which tends to prevent the appearance of striae, 

particularly when the tap is in service for a long time. The grease used was the 

well-known rubber-paraffin-vaseline mixture, and, contrary to the experience of 

GermannC13), we found that oxygen had no detectable effect on its appearance or 

properties. No leak between the interior of the apparatus and the air was ever 

observed, though the point was frequently tested. Nitrogen was tested for directly 

by exploding down about 1200 c.c., of hydrogen and 600 c.c. of oxygen, the quantities 

being adjusted so that hydrogen was in slight excess. The hydrogen residue, of 

about 3 c.c., was transferred to a small explosion eudiometer and mixed with 2 c.c. of 

oxygen. After passing a spark and introducing a small quantity of alkaline pyrogallol 

solution, about 1 c.mm. of gas remained unabsorbed. In other experiments hydrogen 

and oxygen residues were sparked over water or potash ; in no case was any diminution 

in volume noticed. 

The presence of nitrogen in either gas might give rise to traces of oxides of 

nitrogen, and eventually nitric acid, as a result of the explosions, or to ammonia as a 

result of the sparking. Oxides of nitrogen (except nitric oxide), nitric acid, and 

ammonia would remain with the ice in the explosion vessel. The water formed left 

no residue on the glass or mercury surfaces when evaporated; was odourless, tasteless, 

and neutral in re-action, and, when tested for nitric acid and ammonia, gave negative 

results. Traces of nitrogen, or other gases, in the hydrogen, provided that they were 

left unaltered by the explosions and sparking, would introduce no error, since they 

would be measured as part of the hydrogen residue. Any such impurity in the 

oxygen, on the other hand, would make the hydrogen residue too great by an amount 

equal to three times the volume of the original impurity. 

The presence of carbon compounds in either gas would almost certainly lead to the 

formation of carbon dioxide in the explosion vessel. Since the vapour pressure of 

carbon dioxide, at the temperature of the acetone, solid carbon dioxide mixture used 

for freezing out the water, is more than 40 mm. of mercury, this gas would escape 

with the hydrogen from the explosion vessel to be retained and detected in the liquid- 

air-cooled spiral. 

We have no direct proof of the completeness of synthesis, but the hydrogen 

residues were sparked at different pressures and for varying periods of time without 

affecting the results. The measured volume of hydrogen left in the pipette at the 

end of a determination was usually removed by the mercury pump, but in 

experiments 7, 8 and 9 of series 4, it was transferred to the explosion vessel and 
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constituted the first hydrogen filling of the succeeding experiment.* The results 

show no indication of an accumulating impurity. 

The successful removal of water from the hydrogen residue was proved by the fact 

that the small phosphoric oxide tube between the explosion vessel and the pump showed 

no signs of deliquescence after four years’ use. 

Accuracy of Volume, Pressure, and Temperature Measurements. 

Owing to the fact that all gas measurements were made in the same vessel under 

the same conditions, various possible errors in this category tend to cancel out. 

Volume errors.—Since all volumes were measured in terms of a weight of mercury, 

an accuracy greater than necessary was readily secured. The only operation in which 

special care was needed to prevent a volume error was the setting of the meniscus 

to the point in the dead-space. The final adjustment was always made with a 

rising meniscus, and cohesion effects were minimised by tapping the glass or pinching 

the reservoir tubing. The probable limits of variation may be estimated from the 

concordance of the values obtained in calibrating the dead-space at the beginning of 

the research. 

Pressure errors.—The vertical distance between the two glass points of the 

manometer was measured with a cathetometer when the system was in ice. The 

accuracy, attainable was not very great because of distortion by the small bath round 

the dead-space, but from two measurements giving values 760'35 and 760‘32 mm., 

respectively, it may be concluded that the distance was within a third of a millimetre 

of the normal barometric height. A deviation of 1 mm. alters the density ratio only 

by 1 part in 500,000, so that a difference of the above order is quite negligible. 

The precision with which the mercury meniscuses could be set to the two points 

was certainly very high. The order of accuracy attainable was tested in the 

following way : the upper chamber of the manometer was viewed through a telescope 

fitted with a Hilger micrometer eye-piece, and the cross-wire was set on the point. 

The meniscus was then adjusted until the cross-wire appeared exactly tangential to 

it. On examination with the pocket lens which was used in making the settings, a 

distinct gap was detectable between the point and its mirror image. Assuming the 

limit of accuracy with a micrometer to be 0‘01 mm., it was estimated that adjustment 

by means of the lens should be within 0‘002 mm. 

The effect of capillarity on the pressure measurement can be neglected, since in 

tubes of the diameter of the point chambers (16 mm.), even the absolute depressions 

are vanishingly small. 

Temperature errors.—These were undoubtedly the limiting factors in the 

accuracy of the work. Several have already been discussed in detail in the course 

* At this stage of the research the bubble trapped in the dead-space was removed after expulsion of 

each pipette-full of gas, so that the final hydrogen filling was not contaminated with oxygen. 
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of the paper. They may be tabulated here conveniently under five heads, as errors 

due to :— 

(1) Length of time required for the gas in the pipette to cool to 0° C. 

(2) Variation in the temperature of the iced system on different occasions. 

(3) Rise in temperature in parts of the iced system before completion of setting. 

(4) Variation in temperature of exposed portion of manometer column. 

(5) Relative temperature change in the mercury in the manometer and dead-space 

below the level of the point. 

Comment on the nature of the error under each head may be made as follows :—- 

(1) Systematic error, which was estimated in the first four series and eliminated in 

the fifth. 

(2) Probably very small errors : the point was frequently tested by repeating a 

measurement on the following day, when results agreeing to within a few cubic 

millimetres could be obtained, provided that the pipette had been in ice for a sufficient 

length of time. 

(3) Negligible errors : experiments prove that the system remained at 0° C. for a 

much longer period than was actually required for the setting. 

(4) Small hap-hazard errors, estimated and corrected for in series 3 and 4 and 

eliminated in series 5. 

(5) Small hap-hazard errors, except perhaps in series 5. 

A very large proportion of the time occupied by this research was spent in investi¬ 

gating errors of temperatures and, although we have no reason to regard our final 

result as seriously affected by such errors, we are inclined to believe that if the whole 

of the measuring apparatus down to the point where the manometer joins the tubing 

below the dead-space had been in direct contact with melting ice, a better concordance 

would have been obtained. 

One further point suggested itself as worth examination. With the measuring 

apparatus used only a small variation was possible in the volume of hydrogen taken 

for synthesis. In the first three series, where this variation was greatest, there is no 

indication of any connection between the quantity of hydrogen taken and the result. 

Of the thirty-two experiments considered, the mean of those sixteen in which the 

hydrogen excess was greatest agrees to 1 part in 100,000 with the mean of the other 

sixteen. 

The Atomic Weight of Hydrogen. 

If the ratio of the combining volumes is 2'00288 the atomic weight of hydrogen is 

1‘00772, when Mokley’s values for the densities, namely, 0'089873 and 1'42900, are 

taken *- 

VOL. ccxvi.—A. 3 M 
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Comparing our result with those of Morley and Noyes, we have :— 

Morley .... 1*00762, 

Noyes. .... 1*00787, 

or, as estimated by Clarke from the same data, 

1*00783, 

Burt and Edgar . 1*00772. 

Our value, therefore, is very nearly the arithmetic mean of the other two. 

In 1914, a paper was published by Germany (14) containing a series of measurements 

of the density of oxygen. 

As a mean of fifteen experiments he obtained the value 1*42906 for the weight of 

a normal litre. The gas was made by heating potassium permanganate, and, after 

passing over potash and phosphoric oxide, was liquefied and fractionated. This last 

precaution entitles his results to special consideration. Collecting the results obtained 

by Morley, Rayleigh, and Germany, we have 

Morley (41 experiments). . . . 1*42900 

Ra\tleigh (16 experiments) . . . 1*42904 

Germany (15 experiments) . . . 1*42906. 

The arithmetic mean is 1*42903, but Germany, attaching rather greater weight to 

his own result, partly because his oxygen was liquefied and fractionated, and partly 

because of special precautions taken in measuring the pressure, proposes the figure 

1*42905 as the most probable value on existing data. Further confirmation of the 

higher value is afforded by the work of Scheuer(15), who has recently obtained a 

result identical with Germany’s. The substitution of this value (1*42905) for 

Morley’s in the density ratio alters our atomic weight to 1*00769. It seems unlikely 

that any probable future alteration in the density ratio would bring our value as low 

as Morley’s or as high as Noyes’, and we may conclude that the true value of the 

atomic weight of hydrogen lies very close to 

1*0077. 

Part of the expense of this work was defrayed by a Royal Society Grant which we 

desire to acknowledge here. We are indebted to Prof. Dixon for his continued 

interestin the research and for a number of helpful suggestions. 
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IX. Mathematical Contributions to the Theory of Evolution.—XIX. Second 

Supplement to a Memoir on Skew Variation. 

By Karl Pearson, F.R.S. 

Received February 2,—Read February 24, 1916. 

[Plate 1.] 

(1) In a memoir presented to the Poyal Society in 1894, I dealt with skew variation 

in homogeneous material. The object of that memoir was to obtain a series of curves 

such that one or other of them would agree with any observational or theoretical 

frequency curve of positive ordinates to the following extent:—(i) The areas should 

be equal; (ii) the mean abscissa or centroid vertical should be the same for the two 

curves ; (iii) the standard deviation (or, what amounts to the same thing, the second 

moment coefficient) about this centroid vertical should be the same, and (iv) to (v) 

the third and fourth moment coefficients should also be the same. If fxs be the sth 

moment coefficient about the mean vertical, N the area, x be the mean abscissa, 

a- — v iu2 the standard deviation, /31 = M/wf At — c-JuT then the equality for the two 

curves of N, x, <r, f3l and (32 leads almost invariably in the case of frequency to 

excellency of fit. Indeed, badness of fit generally arises from either heterogeniety, 

or the difficulty in certain cases of accurately determining from the data provided the 

true values of the moment coefficients, e.g., especially in J- and U-shaped frequency 

distributions, or distributions without high contact at the terminals ; here the usual 

method of correcting the raw moments for sub-ranges of record fails. 

Having found a curve which corresponded to the skew binomial in the same manner 

as the normal curve of errors to the symmetrical binomial with finite index, it occurred 

to me that a development of the process applied to the hypergeometrical series would 

achieve the result I was in search of, i.e., a curve whose constants would be determined 

by the observational values of N, x, a-, and /32. 

The hypergeometrical series was one not only arising naturally in chance problems, 

but covering in itself a most extensive range of functions. The direct advantage of 

the hypergeometrical series is that it abrogates the fundamental axioms on which the 

Gaussian frequency is based. The equality in frequency of plus and minus errors of 

the same magnitude is replaced by an arbitrary ratio, the number of contributory 

VOL. COXVI.-A 546. 3 N [Published June 6, 1916. 



430 PROF. KARL PEARSON ON SKEW VARIATION. 

causes is no longer indefinitely large, and the contributions of these causes are no 

longer independent but correlated.* 

Since and /32 are by nature positive we can represent all possible values of /31 on a 

chart in which (3X and j32 are the co-ordinates of a point in the positive quadrant. But a 

little consideration shows that (32 must be greater than /3l, thus one-half the area of the 

quadrant, that above the line /32 — /3X is removed from the field of possible occurrences. 

Further, there is a limit to the application of the series of curves discussed when /3, 

gets large, for the high moments of two of the types of curves, i.e., Types IY. and VI., 

or 
v tan 1 x ja 

V 
■] (x—a)q'z 

and y = yt) --- 
x 11 

become infinite when the order of the moment is greater than r, or the probable error 

of the fourth moment would become indefinitely large for r = 7, i.e., we are practically 

limited by the line 8/3a—15^ — 36 = 0. The first four moments of the curve remain 

finite, but from the fifth onwards they can become infinite, the lines corresponding to 

these, however, lying outside the above line.! For curves corresponding to points 

below this line it is fitting to take as differential equation 

1 dy _ _b + x_ 

y dx c0 + cyx + c2x2 + cpt? ’ 

or a slightly more general form which is related to the higher hypergeometrical 

F (a, (3, y, 6, e, l) as the present series of curves to the simple hypergeometrical 

F (a, (3, y, l). The whole theory of curves of the above type has been worked out for 

some time past, but has remained unpublished, for we failed to find any definitely 

homogeneous data by which it could be effectively illustrated, and for this reason 

heterotypic curves have for the time being been left in abeyance. We may, however, 

notice the following point. If we take our generalised hypergeometrical to be 

1 , a ■ ■ y , (a + l)(/3+l)(y+l)a./3. y , 
0.e.£ (0+l)(e+l)(f+l )6>.»,.f 

Then 
— 2/u + 2/i + 2A+ ••• • 

y:c+\_(a + cr) ((3-\-x) (y + a?) 

yx (0 + cc) (e + a?) (£+as) 

and this will correspond to the ordinary form if f = 0, i.e., F (q, (3, y, 6, e, l). 

* Just as values of the binomial (p + q)n with negative n andj?>l very often give good fits to frequency 

distributions, so we have recently found that hypergeometricals F (a, /3, y, 1) with imaginary a. and /? are 

of fairly common occurrence in frequency distributions, and when applied to individual samples from real 

hypergeometrical populations may give better fits than the theoretical series, i.e., in card drawings, 

t See Rhind, ‘ Biometrika,’ vol, VII., p. 133. 
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We have 

Vx+\ Vx _ 2 {ctj3y— 9e£+X (a(3 + fty + ya — Be — + (a + /3 + y — 6 — e — (()} 

~k {i/x+1 + 2/j:) {a/3y + +x(af3 + (3y + ya + 6e + e£ + £6) + X2(a. + fi + y + 6 + e+£) + 2X2) ’ 

and accordingly we get the curve approximating to the hypergeometrical of the higher 

order by putting 
1 dy _ quadratic function of x 

y dx cubic function of x 

a0 + axx + a.,x2 r-\ 
=---o --.(n) 

c0 + CiX + CoX + c3ar 

where the six independent constants can be expressed in terms of the original six, 

a, (3, y, 6, e, It will be seen that a hypergeometrical of the second order will, in 

general, have two modes, the exception being when 

a + /3 + y = 0 + e + £;.(iii) 

in which case (ii) coincides with (i) the general equation to the fourth approximation 

of curves when /3i and /32 fall into the heterotypic area. It will thus be noted that such 

curves approximate to hvpergeometric series of the second order when the special 

condition (iii) holds ; always assuming the unimodal character of homogeneous material. 

It seems probable that for the most part bimodal frequencies would be those that lead 

to values of /3i and (32 lying in the heterotypic region, and such are excluded from 

practical statistics. 

In the original paper* four types of curves were dealt with beside the Gaussian 

curve corresponding to an isolated point. A supplementary memoir issued in 190It 

dealt with two further types, which had been overlooked until actual experience 

demonstrated their existence. I have now to confess the omission of five further 

types, not to speak of a horizontal straight line, as sub-groups of the J-section of 

curves, which are themselves in practice so rare, that the region of the /3lf f32 plane in 

which they occur had not been very fully investigated. My attention was drawn 

to these curves while considering the frequency curves for the correlation of small 

samples. If we take a sample of four from uncorrelated material, the sample is equally 

likely to have every correlation from —1 to +Lj In this case, (31 — 0, j32 — 1 '8, and 

the frequency curve is a horizontal straight line. What would my series of curves 

give in this case ? I discovered that they also gave a rectangle of frequency or a 

horizontal straight line, and this discovery led me to a closer investigation of the 

sub-groups of curves in the neighbourhood of the J-curve area. The point in the 

* ‘Phil. Trans.,’ A, vol. 186 (1895), pp. 343-114. 

f ‘Phil. Trans.,’ A, vol. 196 (1901), pp. 443-459. 

| ‘ Biometrika,’ vol. VI., p. 306, and vol. X., p. 312. 

3 N 2 
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[3i (32 plane for which (3± = 0, /32 = 1'8, I term the rectangle-point and denote by R. 

(See folding diagram, Plate 1, at end of paper.) 

The rectangle-point is the point of contact with the axis of [32 of the biquadratic 

A(8/32-9A-12) (/32 + 3)2 = (4&-3A) (10/32—12/3, — 18)2, 

which bounds the area of J-curves. The novel curves are in part limiting curves 

which occur when the point /31; (32 lies on this biquadratic, i.e., transition curves from 

J-curves to U-curves and from J-curves to limited range curves, and in part a 

limiting curve which exists along the line 5/32—6/31 — 9 = 0 which passes through the 

rectangular point and never again meets the biquadratic in the loop in the positive 

quadrant. It would be convenient to speak of this line as the axis of the biquadratic 

loop, but unfortunately the loop is not symmetrical about it, and to avoid misunder¬ 

standing 1 term it the R-line. 

Up to the present the minimum limit to the area of U-curves had not been given. 

Since /32 is > /31? half the positive quadrant was impossible, but a recent observation 

shows that frequency curves above the line (32-(3l— 1 = 0 are impossible. This limit 

was suggested in the following manner. When samples of three are taken from an 

indefinite population, the frequency curves for the correlation of any two variates of 

the three individuals sampled are U-shaped frequency curves, but when samples of 

two are taken the correlation must be either positive or negative, and accordingly 

the frequency is collected into two lumps or blocks as a limiting case of a U-shaped 

distribution. But for two such lumps /32—— 1 = 0. In other words, along the line 

(32—(3l— 1 = 0, the U-shaped frequency either brings all frequency to an end, or 

passes through a transitional case. The former is the true state of affairs, for j32 

cannot be less than /3X H-1. To demonstrate this,# let sp — S (xnp), and let there be 

n quantities xu. Clearly, s0 = n, and sx = 0. Now by Burnside and Panton, 

‘Theory of Equations,’ vol. II., p. 35, 

7t 
N (•£{ u) (u u) / — 

r> s>t 
r, s, t = 1 

= So 

$19 s2, 

n, 0, 

o, s2, ^3 

^2? ^35 

/ sjn s2/n2 

W/n2 s2/n3 

«' (s2s4-Sj2) -s.j 

-l) = %3(-2-a5-l) 
^2 fJ-2 / 

= s23(/82-A-1), 

■ * I owe this neat proof to the kindness of Mr. G. N. Watson. 
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which must therefore be either zero or a positive quantity. Thus we see that the 

whole area covered by my frequency curves is limited above by the line ft—ft— 1 = 0, 

and below by the line 8ft — 15/3X — 36 = 0. The first line limits all frequency; the 

second line limits my types.* 

(2) Before proceeding further, let us examine the limit to all frequency. Consider 

the line ft—ft —1 = 0. 

The form of the curve isf 

Now, 

where 

therefore 

Hence 

V»i 

m'2—rn' + e — 0, 

r = 6 (ft-ft-1) 
3ft-2ft + 6 ’ 

r — 0 and e = ^r2/(l—K2) also = 0. 

m\ + m'2 — 0 and m\m'2 =0, or m1 = — 1, m2 — — 1. 

The form of the curve is accordingly 

V = 
Vo 

! + -)( 1 
Cli 

oc 

a2 

or, apparently, U-shaped. Now 

b = b {ft (r + 2)2+16 (r+l)}1/2 

= <r {ft+ 4 
and is finite. But 

?/o 
r (ml + 'm2+ 2) 

b (wii+m2)mi+m2 B (m1 +1) B (m2 +1) ’ 

_ N (m1 +1) (m3+ l) m1mim2CT2 (ml + 2) (m2+ 2) T (m1+m2 + 4) 

But 

b m1 + m2+ 2 (m1 + rn2)mi+m2 (m1 + m2 + 3) B (mj + 3) x F (m2+3) 

_ N li it , (wfi+^^+l) 4 x r (2) 
b ilDm 01 mi+m2+2 F(2)xF(2) 

limit of K + l) K+l) = 
wii -\- tyi2 T 2 Ax A2 

* It is not accurately correct to say it limits my types of skew curves. What it actually does is to cut 

off an area in which the probable errors of the constants of Types IV. and VI. curves can be very great. 

The curves may give a good fit, but the constants cannot be cited as characteristics of the frequency 

distribution as they are unstable. 

t The notation throughout is that of my original ‘ Phil. Trans.1 memoirs of 1895 and 1901. 
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when both \\2 are to be made vanishingly small, being m1+ 1 and m2 +1 respectively. 

Thus the limit 

= i_= -L = o. 
1 /x1 +1 /\2 03 

Hence y0 vanishes or y is zero at all points, but x = — oq and x — a2 where it is 

undetermined. 

Since ftq/cq = m2/a2> we have aq = a2, and the frequency really consists of two 

concentrated groups at — cq and a2, or at ±^b. 

If fx i and iu'\ he the distances of the centroid from the two ends of the range, 

/ 
M l 

// 
M l 

n 

n' 

where ft' and n" are the frequencies^ concentrated at the range terminals. But 

/j.\ = b (mj+ l)/(m1+m2 + 2), or we have = (ftq + l)/(m2+l) = Xj/X2, or is the 

finite quantity which marks the ratio of the vanishing of ftq+1 and m2+l ; this, 

therefore, is equal to n"ln'. 

Clearly 

n'i = (■n"-n')/(n"+n') 

/4 = (n"+n')/(n" + n') ^ = W, 

tx 3 = (n"—n')/(n"+n')^~ > 

and 

Thus 

m'4 = (ft"+ *')/(*"+ *0 T7T = tV&4, 
Io 

/x2 - b2{n'n")/{n' + n"Y, 

M3 = b3n'n"{n"-n')/{n'+n"Y, 

^ = Vn'n" {n,2+nm-nW)l{n'+n")\ 

o _ n" ,ri o „ _ ft" ri , 
Pi — — H—— A P2 — 4—7> “ 15 

ft ft ft ft 

giving as verification /32—/3X — 1 = 0. 

Thus the whole problem is solved if we know the magnitude of the two frequencies 

ft' and ft" concentrated at b and + 

As special cases the point on the da-axis gives /31 = 0, /32 = 1, and represents two 

equal concentrated frequency lumps ft' = ft" = g-N. The point at co on the line 

/32—/?i — 1 = 0, or /3l — /32 = co represents a single frequency lump, for which ft' = 0, 

ft" = N. I speak of these concentrated frequency lumps lying on the line /32— 1 = 0, 
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as block-frequency, and represent them by the letter B; they correspond to points on 

the B-line. (See Diagram, Plate 1.) 

The most remarkable limiting case of this kind has been already referred to. It 

will be shown in practical examples in a memoir on “ small samples,” now nearly ready 

for press, that the correlation between two variates may be determined by sampling 

these populations in pairs, and merely observing, which can be usually done without 

measurement, whether the pair is positively or negatively correlated. The ratio of 

the two frequency “lumps ” easily provides the correlation.* 

(3) Let us now consider the nature of the frequency on the loop of the biquadratic. 

Taking the form of the curve to be 

y = y0 (l + x/a1)m (l —cc/a,)m2 

we know that mx and m2 are the roots of the quadratic 

m2—m (r—2) + e — r + 1 = 0, 
where 

r = 6 (/32-/31-l)/(38I-2&+6), 
and 

o 
_ r 

4+iA (r + 2)2/(r+l) 

Now e—r+1 = 0 provides the biquadratic 

ft (8/3,-9/^-12) (/3,+ 3)2-(l0/3,-12/3!-18)2 (4/3,- 3ft) = 0 ; 
actually 

+ 1 = (4/32—3/3i),(lO/L—12,Si —18)2—& (/3,+ 3)2 (8/3, —9/3x —12) 

(3fr - 2/3, + 6) {A (/3,+ 3 )2 + 4/3x (4/3, - 3A) (3ft •- 2/3, + 6)} 

Now /?i, 4/3,—3/3x and /3,+ 3 are by their nature essentially positive. Hence, 

provided 3/3x —2/3,+ 6 is positive, i.e., as long as we deal with points above the line 

2/3,— 3/3x — 6 = 0, i.e., the Type III. curve line, e—r+1 will be positive, if (/3X, /32) lie 

outside the loop of the biquadratic. But within the loop it is negative, or one value 

of m must be negative, or we reach an infinite ordinate at x = — cq or a2, i.e., a 

J-shaped curve. The other ordinate at x = a2 or —ax is zero, because the other m must 

be a finite positive quantity. 

If e—r+1 = 0, i.e., along the biquadratic loop, one value of m is zero, and the 

other is positive if r be greater than 2, and negative if it be less than 2. But 

r O _ 2(5/3,—6/3, —9). 
3/3i — 2/3,+ 6 

Accordingly above the line 5/3,—Gfr — 9•= 0, and above the line 2/3, —3/3! —6 = 0, r—2 

will be negative, but these lines do not meet in the positive quadrant. Hence all 

* See “ Student,” ‘ Biometrika,’ vol. VI., p. 304, and Fisher, ‘ Biometrika,’ vol. X., p. 508. 
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along the upper boundary of the loop one m is zero and the other negative. 

Accordingly, from the R-point round the upper boundary of the loop, we have the 

curve 

y = y0{i+x/ai)~m\ 
I call this curve Type VIII. 

Since —m\/ai = m2la2, and m2 is zero while mi and cq are finite, it follows that 

a2 = 0, and accordingly the range of frequency is from x = 0 to x — — cq. The curve 

is therefore a J-shaped curve with infinite ordinate at one end of the range and a 

finite ordinate at the other. 

Now consider the lower side of the loop. Here 5/32—6/3i — 9 will be positive, for 

this side is below the R-line and 3/3i —2/32+6 will also be positive until the point 

in which the line 2/32 — 3/3i — 6 = 0 meets the lower side of the loop, i.e., the point 

(3x =4, (32 — 9. Hence from the R-point up to A = 4, j32 = 9, a point practically 

outside the range of the customary statistical frequencies, r—2 will be positive, or 

nil will be positive. Further mx and cq being finite and m2 zero, it follows that a2 is 

zero, or the curve is 
y = y0{3+x/ai)m\ 

In this case the curve has a zero ordinate at one end and a finite ordinate at the 

other. I term this curve Type IX. 

At the point where the line 2(32 — 3(3i — 6 = 0 meets the biquadratic, Type IX. 

agrees with my earlier Type III. 

The equation to that type is# 

where 
y = y0 (1 +x/a)yae yx, 

4 2 
yd — —-1 and y — —7= • 

A oVA 

Hence for A = 4, ya — 0, and y = l/<r. Thus a is zero and the curve becomes 

y = y^~x]\ 
the range being from 0 to co, 

But in Type IX., since r has become infinite, m: is infinite and the limit to 

y = 2/o(i+*M)"h 

is accordingly the exponential curve 

y = y^~Kx> 

as we shall see shortly A must equal l/<r, where a is the standard deviation. 

I propose to call this exponential curve Type X., and the point A = 4, A = 9, E or 

the exponential point. 

* ‘Phil. Trans.,’ A, vol. 186, p. 373. 
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Beyond the exponential point, our biquadratic branch lias entered the area of 

Type VI. curves,* and m, will now again be negative. 

Now the equation to 'Type VI. is 

y 
(x—a)g2 

Vo:-- 5 

and the range from x— a to oo. The special case of this along the branch of the 

biquadratic occurs when q2 — 0, leading tof 

l - (h = ej = /’ 1, 
or 

y = yjx'h 
where 

= 2(5ft-6/9,-9) 

which is positive, since qx is now beneath both the lines 

5/30—6/3, —9 = 0 and 2/32—3/3] —6 = 0. |. 

This curve, which will be more fully considered below, has a range from a certain 

value a to o°. [t thus starts with a finite ordinate and asymptotes to zero. It is 

a transition curve extending from the exponential point along the lower limb of the 

biquadratic loop. I call this curve Type NI. The biquadratic never cuts the cubic 

along which Type V. lies and no further change occurs in Type XI. 

I now pass to the consideration of the B-line or 5/3,— 6/3] — 9 = 0. 

The general differential equation § to the type of frequency curve under con¬ 

sideration is 

Idy= - {\ /3i (/3, + 3) + (10/3,-12(3,-18) x/a) 

V dx rr { 4/3, - 3/3]) + Vfa (& -+ 3) xfa + (2/3, - 3 fa - 6) x2l<r2} ’ 

the origin being at the mean. 

Hence if 5/3, —6/3] —9 = 0, the term in x/a disappears from the numerator, and we 

can further get rid of fa by substituting 1 (6/3]+ 9) for it. Making this substitution, 

we reach 

1 cly =_-2y/A_ 

y dx or (3 +fa) — (T {Vft 1—x/rr)2 

* ‘ Phil. Trans.,’ A, vol. 197, p. 449. ■ 

t Loc. cit., Equations, bottom of p. 449. 

» f As we pass outwards from the exponential point along the biquadratic qi ranges from oo to 5, which 

it reaches at the asymptote to the biquadratic fa = 50, or when fa — oo, fa = 50. 

§ “ Mathematical Contributions to the Theory of Evolution, XIV. On the General Theory of Skew 

Correlation and Non-Linear Regression,” p. 6, ‘ Drapers’ Company Research Memoirs,’ Cambridge 

University Press. 

3 o VOL. COXVT.-A. 
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This leads on integration to 

V = Vo 
(17 (v 3+/3, + y /3;) + x\V 

■mt (-\/3 + fa — \ fa)—x 

I term this Type XII., or the R-line J-curve. The origin is the mean, the range 

from x ——or (vS +/31 +\ fa) to <r (\ 3 -t- /Sx — v fa). It separates J-curves—so long as 

we are above the line 2/T—3/3, — 6 = 0—for which /• — 2 is positive from those in which 

r—2 is negative. But r—2 — + Hence below the R-line the positive oq is 

greater than the negative nr,, but above this line the positive my is less than the 

negative m2, i.e., the upright of the J is emphasised at the expense of the horizontal 

part, while below the Rdine this condition is reversed until on the biquadratic the 

infinite ordinate of the J-upright is replaced by a finite ordinate. 

I propose now to consider a little in detail the nature of these new types of frequency 

and the manner of fitting them to actual data. 1 have dealt above sufficiently fully 

with “block-frequency and its criterion faj—fa — l =0 and therefore need only 

consider Types VIII. to XII. 

(4) Frequency Curve, Type VIIL— 

y - y0(l+x/a)-m. 

Range, from x — 0 to x — — a.* 

IP is clearly the value of the ordinate at x — 0, re., the finite ordinate at the tail. 

We easily deduce if N be the total frequency y0 = N (l — m)/a, and taking the 

origin at n — — a, 

x — y.\ = ct (1 — m)/(2 — rn), fa, = a2 (1 — m)/(3 —m), 

fa., = as( I — m)f( 4 — m), fax = a4 (1 — m)f( 5 — m). 

Hence for the moment-coefficients about the mean 

a-~ = /JL-, = o' (I — m)/{ 3 — in ) (2 — in)“ [■, 

/.<•: — 2ct"m (l — (2 — inffa 

U-i — 3«4(l — m) (4 — 5»H-3?n2)/{(o — m) — — (2 — in) 

These lead to 

n 

fa 
4 m2 (o — m) 

(l — in) (4 — mf 
fa 

_ 3 (3 — m) (4 — bin + on fa 

(l — o?) (4 — m) (5 —in) 

< dearly rn could be found from the value of fa by solving the cubic equation 

ntf (4 — fa) + nr (9/3, — 1 2) — 2ifam+ 16/3, = 0, 

* Of course, whether a is really positive or negative will depend on the sign given to x, or the direction 

of the ''-axis. 
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then a is determined from 

a = ±er(2-rn) a/ ~—— , 
V l —m 

the sign being determinable from the observed value of ju3 and y0 from 

N(l-m) 
?/o = —- 

a 

N I — m / 1-772 

a 2 — m \ 3 — m 

and the placing of the frequency curve on the observations by 

//] = a (L —m)/(2—m). 

If, however, we find 108,—12&—18 and 3^,— 2/5, +6, we have 

giving o o 

10/3,-12/3,-18 = + 

3,8, —2/3,+ 6 = - 

24m (m — 2):: 
(l — m) (5—m) (4—m)2 ’ 

24 (m —2)3 
(1 — m) (5—m) (4—m)2 ’ 

2 (5/33—6/3, —9) 
3/3, -2/3, + 6 

and thus since m is to be positive, the point (/3„ 82) must be above the line 

58, — 68i —9 = 0. The line 2/3o—38i — 6 = 0 does not meet 5/3, — 6/3i — 9 = 0 in the 

positive quadrant, so that a point below both these lines does not exist in real 

frequency. Clearly 

1-m = (882-981- 12)/(38i-282 + 6), 

3- m = (48,-381)/(381-28, + 6), 

4— m = 2(82 + 3), 

and thus if these values be substituted in 81 as given above, we reach 

81 (82+ 3)2(88,-98i-12) = (482-38.) (IO82-I281-18)2 

the equation to the biquadratic, proving that the point associated with the above 

frequency curve lies on the biquadratic. 

Again 1 —m will always be positive, or m less than unity. For the upper branch 

of the loop of the biquadratic lies below its asymptote, or 8(32—98i— 12-f = 0, and 

accordingly below the line 88, — 98i —12 = 0 ; thus the numerator of 1 —m is always 

positive. So also is the denominator, for the upper branch always lies above the line 

282-38i-6 = 0.* 

* In fact the R-line (582 - 681 -9 = 0) the parallel to the asymptote (8/3o - 9/2, -12 = 0), the limiting 

frequency line (/+-81-I = 0), and the Type III. line (2f3-2- 3/3 - 6 = 0) meet in the point 82 = - 3, 

81 = - 4 of the negative quadrant and the upper branch of the loop lies in the angle between the first two 

and in the positive quadrant. 

3 O 2 
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As m is positive and less than unity the area and moments of the curve are all real 

and finite. When the point (ft2, ft^) moves along the loop of the biquadratic towards 

the R-point (A = 1‘8, /3X = 0), the value of 1 — rn becomes more and more nearly 

unity, and ultimately at R we have rn = 0, or the frequency curve is 

V = Vo 

a rectangle, i.e., we reach the rectangle point. If on the other hand we move towards 

infinity along the upper branch of the biquadratic loop, we find 1— m approaches the 

value 1 f/31 and thus ultimately becomes zero, or m — 1. Thus the limiting form of 

the frequency curve is a rectangular hyperbola, or rather the part of such hyperbola 

V = y0/{l+x/a) 

from the vertical asymptote x — — a to x = 0. 

But this is clearly only a theoretical limit, for it involves /3X = /32— o°,and this 

means that if /u2 be finite, /u.3 and /x4 are infinite—results impossible in any actual frequency 

if the population be finite. It is clear indeed that ft2 must be less than N, for 

obviously < N2/A. Again, ft1 is < ft2— 1, and accordingly /3j<N —1.# But these 

limits are of small service for practical statistics, where even for small samples, say, 

N = 20, they would scarcely ever be approached.'! Thus the rectangular hyperbola can 

only be treated as a limiting form of Type VIII. far beyond the region of actual 

statistical experience-! For practical purposes the point is that m is limited to 

values between 0 and 1, or Type VIII. ranges from the rectangle to the rectangular 

hyperbola. The suggestiveness of this is that curves in the Ixj and the i.j areas, i.e., 

above and below the upper branch of the biquadratic loop, must approach these types 

as they approach the extremes of this branch. Generally a U-eurve near the biquad¬ 

ratic will be close to a curve resembling a curtailed hyperbola. 

* Mr. G. N. Watson has given me a nearer limit to ft2, namely, ft* < N - 2 + q—q-. But, except as 

showing that ft2 must he finite, which is otherwise obvious, this is again of no real service. 

f The highest observed values that I know of for ft2 and fti are those given by Duncker (‘ Biometrika,’ 

vol. VIII., p. 238). He gives 

‘ Armzahl,’ Asterina exigua N = 600 /32 = 33'13, fti = 1'76, 

,, Are)taster typicus N = 902 ft2 = 128-48, fti = 4-76. 

There are only three groups of frecpiency in each, 4, 5 and 6, and the bulk of the observations are 

concentrated in 5. The observations do not give, as he suggests, Pearson’s Type IV. and Type AT. 

curves respectively; the i<2 in both cases is less than unity, corresponding to Type IV. But both fall into 

the heterotypic area of Type IAL The attempt to fit with heterotypic curves would hardly be profitable 

until there was absolute certainty that the group with 4 ‘ Armzahl ’ was not the result of accident. 

\ Theoretically very high values of fti and ft2 can easily be found, i.e., for samples of four, when the 

population sampled has, say, a correlation of 0'98; here the frequency curve for the correlation 

coefficient gives fti = 203-325 and ft2 = 311-731, but it is the rapidly approaching zero of y2 which leads 

to these results, 
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In concluding our discussion of this curve we may note that, perhaps, the easiest 

way of tracing the biquadratic is to calculate ft and ft from 

o _ 4 (2y— l)- (y + l) f, _ 3 (y + 1 + ft)3 (y + 1) (lGy~ — 13y 4 3 ) 

Pl 3y — 1 ’ /3 3 — y (3y— 1) (3 — y) 

by giving a succession of values to y. 

For y = 0'5 to 3 we get the points on the lower branch of the loop ; for y = 0'5 to 

0'3 we obtain the points on the upper branch of the loop. It will be seen that this 

amounts to taking the origin at ft= —3, ft = —4, and rotating a line through this 

point round it to intersect the curve. The slope of this line to the ft axis is 3/(3 —y). 

The cubic, it may be here noted, which gives the Type V. curve may be traced from 

ft = 4 (y2—1), ft = 3(y+1+A) = 3 (y+_l),(4y-3) 
3 y 3—y 

Here y must be given values from 1 to 3. 

The Type III. line, which passes through the Gaussian point, also passes through 

ft = —3 and ft=—4, and the above means of getting at the points on the cubic 

corresponds to finding the points in which a straight line passing through (— 4, — 3) 

and rotating from the position of the Type III. lhie cuts the cubic—-its slope in any 

position being as before 3/(3 —y). 

Actually if B be the angle between the above line from (-4,-3) to the cubic, i.e., 

tan 6 = 3/(3 — y), 
r — 12 (sec B — cosec 0), 

but to use this polar equation has not been found a very ready manner of plotting the 

cubic.# 

(5) Frequency Curve. Tripe IX.— 

Range from x — —a to x = 0 ; y is zero at one end of the range and equal to y0 at 

the other. 

The analysis proceeds precisely as in the case of the curve of Type VIII., except 

that m is now opposite in sign. We have 

y0 = N (1 +rn)/a, 

x (= distance of mean from point x = —a) = a (rn+ l)/(m + 2), 

rr2 — fu — a2(m+l)/{(m + 3)(m + 2)2}, 

//:> = — 2enn (rn + 1)/! (ni + 4) (m v 3) (w. + 2)” ]-, 

/ui = 3ft1 {w, +1) (3wi2 + 5m + 4)/{(wr + 5) (vn + 4) (ni + 3) {rn + 2)4 i , 

* The parts of the cubic and the quartic lying in the other three quadrants have been plotted by 

Miss B. C. B. Cave. Geometrically the interrelations of the two curves, their asymptotic and other 

critical lines are of much interest, but until some interpretation can be put on imaginary values of the 

moment coefficients, these interrelations have no statistical bearing. 
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leading to 

Thus 

,, _ 4m (777+0) p. _ 3 (m + S) (3m + 5777 4-4) 

(m +1) (m + 4)2’ 1 2 (m+ l) (w + 4) (m+ 5) 

w3 (/3j —4) + 3m2 (3/Sj —4)4-24771/3!+16/3, = 0 

would give m, and a would be found from 

«■ + rr ( 777 
777 + 3 
777 + I 

the sign being found from the observed value of /x3. Lastly 

__ N 777+ 1 / 777 + .1 

° rr '777 + 2 V r/7 + 3 ' 

Practically it is better to determine m from 

2 (5/32—6/3! — 9) 

~ 3/3i —2/3, + 6 

which value of 777 substituted in the expression for /3i gives the biquadratic. 

Clearly since the lower branch of the biquadratic lies below the line 5/3, —6/3x —9 = 0, 

rn is positive until the line 2/32 —3/3i —6 = 0 is reached, and in this section of the 

branch, i.e., from m — 0 to m = 00, or from /3, — 1’8, /3i = 0 up to ,82 = 9, ,/3x = 4 (the 

exponential point, E) occurs an interesting isolated point—the line-point L. When 

/32 = 2‘4, /3j = 0’32, then m = 1, and Type IX. degenerates into a sloping straight 

line, y = y(l(l +x/a), or the frequency line is 

V = 
2N 

OfT 

X 

Up to the line-point, Type IX. curve rises at x = —a perpendicular to the axis,- 

of x, at the line-point it makes a finite angle less than 90 degrees, and after the line- 

point we start with contact at x — —a. 

It is interesting to note the sloping line arising as a case of these generalised 

frequency curves, and we observe that its locus is separated from the rectangle locus 

by a considerable interval along the biquadratic in which the curve of Type IX. is 

very trapezoidal in form. 

(6) Frequency Curve of Type X. The Exponential Curve.—Beyond the line-point, 

L at /3, = 2‘4, /3i = 0’32, we reach as rn steadily mounts a series of frequency curves 

which culminate in the exponential curve at E or /3, = 9. /3, — 4. 

Clearly 
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Further 

y 
\j <m + ‘J) il 

= ~ I i + ^ 
CT cr (m -|- 2) 

N 
— e 

the range being from x = 0 to — co, if we take the positive sign—and From x 

to + co, if we take the negative. It is thus sufficient to consider 

= 0 

!J 
_ N ±r/<r 

1 
(T 

with range from x = 0 to x = + 00. The first two moments of the area about x = 0 

are v\ = <7 and v2 = V. Thus .r = a- and /x2 = cr2, as it should. Lastly, = 2o-:! and 

/x4 = 9 a-1. . 

The fitting of the exponential curve presents no difficulty. 

The exponential point E is a transition point of great interest as being even more 

than the Gaussian point G—the meeting point of many types. At E, Type IX_, 

changes to Type XL, but at E the familiar Type III. passes from a zero ordinate 

at the limited end of the range to a J-curve with infinite ordinate. Further, E is a 

point at which the areas of Type I. (Type IL) as a limited range with zero ordinates at 

its terminals, and as a limited range with one infinite ordinate at a terminal (Type Ij) 

meet. Finally, Type VI. area, which lies between Type III. line and Type V. cubic, 

is divided into two sections by Type XI., which lies along the lower branch of the 

biquadratic loop below E. Below the biquadratic, Type VI. takes the form 

V = !/o (x — a)q2/x?\ 

with a range from x = a to 00, g, and q2 being both positive. In the area, however, 

below Type IIIj and above Type XL, type VI. takes the form VIj, or the J-shaped 

curve 

11 = _h._ 
y xq'{x-a)g*’ 

with a range from x = a to x — 00. In this case r = 6 (/32 — /fi— 1)/{S(31 — 2/L+ 6) will 

be negative, since we are below the line 2/fi —3/^ — 6 = 0. Further, t is negative 

since we are above the cubic or Type V. branch 

Thus our quadratic 
4(4/L —3A)(2/L-3fr-6) - + 3)2. 

m!~ — rm! + e = 0, 

corresponds of necessity to real roots, of which one will be negative and the other 

positive. The positive root will be 

i(v r —4e + r), 
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and is therefore numerically the smaller root since r is negative ; it will he less than 

unity, and therefore m'—l = m will be negative if 

|(vV-4f+/’)<l, 
or 

e—r +1 >0, 

but this is the condition for the point /3,, /32 lying inside the loop of the quadratic. 

Thus in this case we reach the J-shaped curve of Type VII., or 

,rq' (x—a)q- 

In order that the area of this curve and its moments should be finite, it is clearly 

needful that q2 should be less than unity. 

(7) Frequency Curve. Type XI.—Beyond the exponential point the lower branch 

of the biquadratic is below the line 2/3.— 3/3] — G = 0, and consequently rn is again 

negative and the curve takes the form 

y = y«x~m, 
where 

m = 2(5/32-6A-9) 
2/3. -3/3, -6 

The range is, however, only limited in one direction, it is from x = b to x = o°, say. 

This lower branch of the biquadratic loop tends to become vertical and asymptotic 

to the line /3i = 50. Hence m takes all values from co down to 5. 

Clearly, for moments about x = ?>, 

and these will be real and finite if p <m— 1, or only the fourth moment would fail 

at the limit /32 = o°, which indeed cannot in practice be reached. At the same time 

if we want, the probable error of the fourth moment to be finite, it is needful that //8 

should be finite or we must have m > 9. Thus m — 9 must be where the curve passes 

into the heterotypic region and becomes of doubtful application. 

We easily find from the above result for y! 

x = 6(m—l)/(m —2), y2 — F — b2 (m— — 2)2 (m — 3)}, 

y3 — 2b3m (m — 1)/{(m — 2)3 (m — 3) (m — 4)}, 

U-i = 3&4 (m— 1) (3m2— 5m + 4)/{(m—2)4 (m — 3) (m — 4) (m— 5)}, 

n _ 4m2 (m — 3) 

(m— 1) (m — 4)' 

3 (m— 3) (3nr — 5m + 4) 

(rn — 1) (m — 4) (m — 5) 

leading to 
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Thus for m — 9 we find /3X = 972, /32 = 22725, which satisfy the equation 

8/32—l5/31 — 36 = 0 of the heterotypic line. 

m may he found from 
= 2 (5j9,—6j3, —9) 

2&-3A-6 ’ 

or from /31 alone by the cubic 

m3(4-i81)+m2(9/31-12)-24/31m+16/31 = 0, 
then 

b= ±.(m_2),\/|5|, 

and 
Vo = N6”l_1 (ra—l), 

while the mean x = b (m— l)/( m—2) enables us to place the curve on the observations. 

There is no discontinuity in the form of the curve down to m = 5, but only 

discontinuity after m = 9 in the probable errors of its moment-coefficients. 

The curve starts with a finite ordinate and meets that ordinate at a finite angle; it 

asymptotes to the cc-axis at x — o°, and has no point of inflexion except at infinity. 

(8) Frequency Curve, Type XII.— 

_ /V {V 3 +& + \//b) -\-x\\/ 

y~vC(v^+a--/a)-J 

This J-curve arises along the R-line, or 5/82 — 6/b~ 9 = 0. Its range is from 

x — cr(.\/s + /3l — \//31) to x = — a (\/3 + /3] + \//3j), and then its mean is the origin. 

When & is zero it degenerates into a rectangle (be., at the rectangle point). 

In order to illustrate the nature of the curve more fully let us start from the 

general equation which arises when the denominator of the differential equation has 

real roots,# be., 
y = ;7l(l+bAh)'"1 (1 -x/a2)m, 

where 
_ N F (m] + m2 + 2) 

(mj + m2)nil+nH T (mx + 1) T (rn2 + 1) 
and 

m\ _ m2 _ wii + m2 

the origin being the mode and b the range. 

Transferring to the mean as origin! this becomes 

= V* fb(nh + l) [ Vn7 b (m3+1) _ V** 
aC'aX1 \ml + m2 + 2 ) \mx + m2 + 2 / 

* ‘ Phil. Trans.,’ A, vol. 186, p. 369. 

f Loc. cif., p. 370. 

3 P VOL. CCXVI.-A. 
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where* 
b — ijcr { ($\ (wii + 071-2 + 4 )" + 1 6 (wij + 7Y\j2 4“ 3)} '2. 

V* _ N r (m1 + m2 + 2) 

a™1 a.™2 bmml r (m,+ l) T (m2 + l)’ 

on substitution for ax and a2 as above. 

Now put m1 + m2 = 0, or m2 = —ntj = m, say. 

Then 
N . T (2) /6(m+l) \m(b(l-m) _ ' 

hr (1 + m) r (1 — m) \ 2 / \ 2 
while 

b = wo- {16/3, + 48}1/2 = 2<r{(31 + 3)'/\ 

It remains to find m. 

Now m1 and m2 are the roots oft 

where 
m2— (r— 2) m + e—r +1 = 0, 

6 (/3,—/3X — l) o 

3/3, — 2/32 + 6 

__(m1 + m2+2)8_ 

4 (w,-km2 + 4)2/(mi + wi2+ 3) 

Hence, when m, + rn2 = 0, we have 

and 

Whence 

or 5/32 —6/3, — 9 = 0, the Udine, 

e= 3/(A + 3). 

m2 =l—e or m = + A/ —^ 
“ V 3 + /3, 

But F (2) = 1, and it is well known that 

mi 
r (1+m) r (1 —on) = — 

sin ??i7r 
Thus 

y 
N 

sm v: & _ _ _ 
3 + /3, I / q~ (y/ 3 +/3, + -y//3,) + 

:7T(T Pa c (p3+A“ PA) — ic 

This is the full equation to the B-line J-curve, the mean being origin.{ It requires 

for its determination only a knowledge of /3,, but we must be also certain that the 

* Loc. cit., p. 369. 

t Loc. cit., pp. 368-9. Deduced at once from m'2 - rm’ + e = 0 by putting ni = m + 1. 

X The sign of *Jfl 1 in <r( \/3 + /3i± d/fi) must be determined from that of /x3. 
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condition 5/32 — 6/9: — 9 = 0 is satisfied within the limits of random sampling. Tts 

possibilities extend from & = 0 to & = oo. When f3l = 0, 

V = , the rectangle. 

Now consider what happens for any frequency curve of the limiting character 

when both /3: and /32 become infinite, say, in the ratio fi2 — pfiv Then 

6(p-l) 
3—2p ’ 

and accordingly r will be finite if p is finite, except along the Type III. line. 

Accordingly for /31 = co5 e will be zero. Thus the ratio of /32 to (31 is from their 

values, 
r±2 

v + 3 

which agrees with the above result for r. 

For the special case when r — 2, we have p = |, which agrees with the limiting 

ratio of (32//31 along the R-line. 

Now when e = 0 we have from 

m2— (r—2) m + e— ?■+1 = 0, 

m = \ (r—2 + \/(r—2)2 + 4?‘—4), 

= T(r—2 + r) = r— 1 or —1. 

Thus from the equations on page 445, 

f _ N F (m] + ?n2 + 2)_/ + 1 x y?t| / m2 +1) _ x \ 

5 F (wij + 1) r (m2 + 1) \wq + m2 +2 6 / \mj + m2 + 2 b / 

_N(m2+l) 1 /r a;Y_1/ .r\_1 

b T(m2 + 2)\r b) \ h) ’ 

= N (w'ig+l)^ _ a\r_1 
a. \ ^b) 

if we chancre the sense of the axis of x and take x from 0 to +b. 

Now in order that <7 should he finite it is needful that b should be infinite when 

m2 = — 1, for 
o-2 = b2 (m2+l)/{r (r+l)}. 

But if b be infinite, y — 0 owing to the factor m2 + f, for every value of x, except x = 0. 

Hence the frequency is a concentrated lump at x = 0, and this involves of itself cr = 0. 

3 P 2 
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But if cr = 0, b must be finite or zero, and these both again throw us back on a 

concentrated frequency at x = 0. 

Accordingly, when ftx and ft2 both become infinite, we deal with a concentrated 

frequency lump. But the ratio of ft1 to ft2 will depend on the manner in which we 

have reached this limiting case. 

For example, if we are dealing with the correlations in samples of two drawn from 

a population in which the correlation is p, the frequency consists of two lumps, but 

as p approaches unity, one lump shrivels up, ftx and /32 both become infinite, but their 

ratio is one of equality, i.e., we approach infinity along the line /32—ftx — 1 = 0. 

When we take samples of three from a population of correlation p, the frequency 

curves are U-shaped, but as p approaches unity the frequency concentrates in one leg 

of the U, ft1 and ft2 both become indefinitely larger, but their ultimate ratio ft2/ft1 

appears to equal f-.# The U-curve flattens down into an L-curve, of which the 

horizontal limb extends to infinity and becomes indefinitely thin, while the vertical 

limb contains all the frequency. 

(9) Scheme, of Skew Frequency Curves Represented as a Diagram.—We are 

now able to considerably enlarge our diagrammatic representation of frequency 

curves. (See Diagram, Plate 1.) 

Every distribution is represented by its characteristic co-ordinates ftl and ft2, which 

must be positive, and therefore we need only deal with the positive ftu ft2 quadrant. 

No frequency distribution at all can lie above the line ft2— /3X — 1 = 0 ; this restriction 

removes more than half the positive quadrant. No frequency distribution can be 

adequately represented by one of the present system of skew curves, if it falls below 

the line 8ft2 —15/^ — 36 = 0. The area below this line is therefore termed heterotypic. 

Heterotypic distributions are to say the least of it very rare, if they be not extremely 

improbable. We have seen that there is some reason to suppose that bimodal 

distributions would give rise to such heterotypic distributions, but with our present 

views as to frequency such distributions when they do not arise from the mere 

anomalies of random sampling are classed as heterogeneous, and supposed to be due 

to mixtures. 

Having thus limited our area at top and bottom we proceed to consider the various 

possibilities that arise. 

The ft.,-axis, where ftx — 0, is the axis of symmetrical frequency distributions. 

Possibilities begin at the B-line or the point ft2 — 1, or we have two equal concen¬ 

trated frequency blocks at any arbitrary distance b. This is the case of two 

alternative values, either of which is equally probable. For example, heads or tails 

in the repeated tossings of a single coin, or positive or negative perfect correlation 

in samples of two taken from a population of individuals bearing two uncorrelated 

* I use the word “appears ” advisedly, because the ratio has been obtained by determining the value 

of ft2/fti for high numerical value of (>. The actual ratio for p = 1 depends upon approaching a limit 

in rather complicated elliptic integral expressions, which I have not yet accomplished. 
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characters. Below the point f32 = 1, descending the (32-axis, the two concentrated 

frequencies expand into a symmetrical U-curve. This is Type Ily with the equation 

y = y0 (l —x2/a2)~m 

and the criterion /31 = 0, (32 < 1'8. 

Here* 
m = £(9-5&)/(3-&), 

a2 = a2.2f32/{3-(32), 
and 

? N F (f-m) 

\/2ir(j T (l —m) x/f-—m 

When (32 = 1*8, m — 0, and we reach the “rectangle-point ” R. Here y0 = N/(2a) 

and a = a I v/ 3. 

Samples of three individuals from a population whose individuals carry two 

uncorrelated characters give a symmetrical U-frequency for the coefficients of 

correlation of those characters in triplets of individuals. In this illustration (32 = 1'5. 

Samples of four individuals from the same population give a rectangle for the 

frequency distribution of the coefficients of correlation. Passing still lower down the 

axis of symmetrical frequency the type is now Type IIL, or the limited range 

frequency curve 

y = y, (l-x2/a2)m 

and the criterion is /3X = 0, /32 > 1'8 < 3. 

In this range m increases from 0 to o°, and 

m = i(5/33-9)/(3-&) 

a; = P. 2,a,/(3-,ffi), 

N r(# + m) 
= - —--> . . . 

\/27ro- r (l +n;-) \/f + m 

We see that the range grows greater as m approaches infinity, or /32 = 3, when we 

reach G the Gaussian point (/3X = 0, /32 = 3). 

If samples of n individuals he taken from an indefinitely large population in which 

the individuals carry two uncorrelated characters, then if n be 5 or over, all the 

frequency curves of the correlation coefficients of these samples are of Type IIL, only 

approaching the Gaussian when n is very considerable indeed. For example when 

n=25, f32 = 27692, and the frequency is still a good way from the Gaussian. 

When n = 400,(32 = 2'9850, it is thus fairly close to it, but is not coincident. 

* It is, perhaps, worth noticing that for /3.2 = 15/7 we obtain the ordinary parabola as a special type of 

frequency-curve. 
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After we have passed the Gaussian point we obtain curves of unlimited range of 

Type VII., of which the equation is 

V = ?/o( l+x2/a2)~m, 

The range of ft, is from 3 to oo and 

m — |-(5/3.,—9)/(/3, —3), 

falls from infinity to 2‘5 ; while 

a2 = a-2. 2&/(&-3), 

t = _N_P(m) 

\/27to- F (m—■§-) \/{m—f)‘ 

Illustration of curves of Type VII * are not infrequent in biological statistics. We 

see that the Gaussian is a mere point in an infinite range of symmetrical frequency 

curves, and a single point in a doubly infinite series of general frequency distribu¬ 

tions. 

Now let us consider the asymmetrical frequency curves displayed on the Diagram. 

If we approach from the “ impossible area ” we reach on the B-line the first available 

type of frequency—the alternative concentrated blocks. At one end of the B-line 

we have two equal isolated frequencies, and at the other a single isolated frequency. 

Crossing the B-line we reach the area of limited range U-shaped curves, i.e., Type 

IU5 which has for its equation : 

jj = y0 (1 +x I aft)-"1' (l —x/a2)~m\ 

This U-area extends as far as the upper branch of the loop of the biquadratic, the 

asymptote of which, 24/32—27/3j — 38 = 0, is indicated by a broken line. In U-shaped 

frequency curves both mx and m2 are necessarily less than unity, for their product 

is e—r+1, which is less than unity and positive above the upper branch of the 

biquadratic (i.e., e—r+1 = 0). Type IL- is fitted as Type I. (see ‘ Phil. Trans.,’ A, 

vol. 186, p. 367), and has been illustrated by me (‘Boy. Soc. Proc.,’ vol. 62, p. 287), 

by fitting curves of frequency to cloudiness. The frequency curves for the correlation 

coefficients of samples of three drawn from a population whose individuals have 

two characters of any degree of correlation are also skew U-shaped frequency 

curves, although their algebraic form has not the above simplicity. 

* Type IIL was discussed in my first memoir, ‘Phil. Trans.,’ vol. 186, p. 372. Type II.T and Type VII. 

are briefly referred to in ‘ Biometrika,’ vol. IV., p. 174, but, unfortunately, with some rather disturbing 

misprints. They are correctly placed on Rhind’s diagram, 1 Biometrika,’ vol. VII., p. 131, but the 

formulae for fitting are not given. The formulae have been given for many years in lecture-notes, and 

the curves have been frequently used. 
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On the upper branch of the biquadratic loop we reach curves of Type VIII., i.e., 

V = Vo (l+x/a)~m, 

discussed on p. 444 of the present memoir. Here m is less than unity. 

We now pass into the loop of the biquadratic between the upper branch and the 

14-line. Here we have J-curves, Type IT, of the form 

y = y0 (l +x/a1)~m' (l + x/a2)~m2 

where m2 is less than unity, and ml is less than m2. 

Coming to the ft-line, mx becomes equal to m2 and we have Type XII., or 

a (\/3 + /3; + ) + ;r\ 

discussed on p. 446 of the present memoir. Below the B-line, we return to Type Ij, 

but m1 is now greater than m2* 

We now reach the lower branch of the biquadratic loop. This is divided into three 

portions by three critical points. The first portion is from the rectangle-point (14) to 

the line-point L. In this portion we start from 14 with the curve of Type IX. or, 

V = Vo (1 + xfa)m 

for m — 0, or the rectangle, and proceed from that value to m — 1, which gives us the 

line (or triangle); the range is —a to 0. Since m is always < 1, the curve rises 

perpendicularly at x =— a, and approximates to a trapezoidal form. The method of 

fitting is discussed in this memoir, p. 441. The fitting of the line curve 

y=y0(l+x/ct) 
is dealt with on p. 442. 

Beyond the line-point L we have Type IX2 which differs in no way from Type IX1} 

except that m is now greater than unity, and there is contact of a rapidly increasing 

order at x — — a. 

When m = o° we find Type X. the exponential curve, at the exponential point E. 

The fitting of this curve 

' <r 
has been discussed on p. 443. 

For example, at the point /32 = 4, /fi = 2, between the R4ine and upper branch, 

y = y o (i + 
X Vasias 

Ct-\ / 1 + - 
ct 9 

0-7123 

but at (3.2 = 8, [3X = 4, between the R line and the lower branch, 

V = Vo ( 1 + 
x V4011 

ax / 1 + 
a--, 

0-4011 
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Since E is the junction of several types, we turn to consider Type III. which is the 

curve found along the critical line 

2/32—3/3x—6 = 0. 

It passes throrfgh the Gaussian point G, and its equation is 

y = y0 (l +x/a)p e~px,a. 

It is fully discussed in my first memoir; see ‘Phil. Trans.,’ A, vol. 186, p. 373, 

et seq. 

From G to the exponential point E, p ranges from co to zero, which latter value 

provides the exponential curve. After the exponential point p becomes negative and 

we reach Type IIIj, a J-curve with range limited in one direction only. This curve 

separates the doubly limited curves of Type Ij from curves of Type VIj, which lie 

below the line 2/32 —3/3i —6 = 0, and above the lower branch of the biquadratic loop. 

On this lower branch of the loop we have Type XI., or the form 

y = y,x~m 

the range being from an arbitrary value b to ay and m ranging from co to 5. This 

type is fully discussed in the present memoir; see p. 444. It continues right awajr 

along this branch of the biquadratic, but at (32 — 22725 and /3X = 972, the eighth 

moment of the theoretical curve would become infinite, and accordingly the probable 

error of the fourth moment coefficient would become theoretically infinite. Thus since 

the fitting of the curve depends on the fourth moment its constants would cease to 

be reliable measures of the distribution. We enter at this point the “heterotypic 

area,” for this type of curve.* We have now two further areas to clear off, namely 

those between the Type III. line and the lower branch of the biquadratic loop. 

Above the former and below the latter we have the range of double limited frequency 

curves, i.e., Type IL, or 
y = 7/o (1 + x/a1)m (l-x/a2)m\ 

This curve was fully discussed in my first memoir (‘ Phil. Trans.,’ A, vol. 186, 

p. 376, et seq.) m1 and m2 are both positive, and experience has shown that probably 

the bulk of all frequency distributions cluster into this area. 

Above the biquadratic loop and below the line 2/32 — 3/3x — 6 = 0, we have curves of 

Type VIj, or 

v =_V£_ 
xq' (x—a)q- 

witli range from x = a to x = oo. 

* Of course, by using the actual eighth moment of the data, instead of the eighth moment of the 

theoretical curve, the standard deviation of the fourth moment would be finite, but this procedure 

would really indicate that, as far as the high moments are concerned, curve and data were discordant, and 

that we should not really be finding the probable error of a constant of our theoretical frequency curve. 
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They have been considered on p. 443 of the present memoir. Their full theory 

is precisely that of curves of Type VI. in general, discussed in the first supplement to 

my memoir on skew variation (‘ Phil. Trans., ’ A, vol. 197, p. 448, et seq.). The only 

point to be emphasised is that the q2 of Equation XIX. of that memoir in this area 

is negative and less than unity. The treatment is identical. 

Below both the Type III. line and the biquadratic, we have a space bounded by the 

cubic 

4(4/32-3/3,) (2/32-3/3,-6) - /3, (/32+3)2. 

This is the area of Type VI. proper, i.e., 

y = y0 (x — a)q2/x9' 

with range from x = a to x = 00, q2<Cq1 being positive, and is fully discussed in the 

memoir jnst cited. 

The area of Type VI. is limited by the above cubic along which Type V., or, 

y = y,x-pe~ylx 

from x — 0 to x — co, describes the frequency. Its full consideration will be found in 

Phil. Trans.,’ A, vol. 197, p. 446, et seq. Below the Type V. cubic we reach the 

area of Type IV. curve, or 

y = y0e~vtan'l{x/a)/( 1 +(xja 

This lias unlimited range in both directions and its treatment is fully discussed in 

my first memoir (‘ Phil. Trans.,’ A, vol. 186, p. 376, et seq.). Theoretically, Types IV. 

and VI. describe all types lying below the line 2/32 — 3/3, —6 = 0. The objection to 

their use lies in the increasing probable errors of their constants, however good their 

general fit may be. To warn the statisticians of this, the line 8/32—15/3, —36 = 0, is 

drawn on the diagram and the area below it is marked “heterotypic area.” I use 

this term to signify that it is doubtful whether my skew-frequency curves, depending 

only on the first four moments, can adequately describe distributions of types falling 

below this line; they require the use of the fifth and higher moment coefficients. 

Their occurrence in practice, however, must be rare. 

It will be noticed that the line /32—/3, — 3 = 0 is drawn through the Gaussian point. 

This is the relation which must be satisfied in the case of Poisson’s exponential limit 

to the binomial. Hence, in the case of a distribution with /3„ /32, near this line, it is 

worth while investigating whether the “ law of small numbers ” is appropriate. Above 

this line every real binomial distribution, i.e., cases of p and q both positive and less 

than unity, and n positive (taking the binomial as (p + q)n) must lie, for 

/32 — 3 _ I — 6pq } 

/3, 1 — 4pq' 

3 Q VOL. CCXVI.—A. 
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and the right-hand side is clearly less than unity. This limited area covered by the 

real binomial explains its relative infrequency as a descriptive series in practical 

statistics. If, however, we take the negative binomial as admissible, i.e., allow forms 

of the type 
(p — q)~n, where p — q—l 

we extend the possible area .of a binomial down to the line 2/3. — 3j31 — 6 = 0. 

Such a type of binomial is by no means of infrequent occurrence and can be more or 

less justified on a priori grounds.* Below Type III. line, the values of p and q become 

in the mathematical sense unreal, i.e., imaginary. It is by no means certain, however, 

that such imaginary binomials with real moment coefficients may not, like imaginary 

hypergeometricals, give statistically good fits and be ultimately provided with 

physical interpretations. 

(10) Concluding Remarks.—It is very difficult to assert finality for any scientific 

investigation, but I trust this second supplement to my original memoir on skew 

variation of 1894 has garnered the last harvest of possible types within the limits 

proposed in that investigation. The object was the discovery of a system of frequency 

curves providing for every possible variation of the first four moment coefficients of 

a distribution and provision for their rapid treatment and calculation. Since 1894 

much has been done by the provision of tables of the new functions and improved 

tables of old functions necessary to carry this out.t Diagrams like that accom¬ 

panying this memoir, enable the statistician who has calculated the characteristic /3L 

and /32, to select at once the appropriate type, from the position of the point fi2 in 

the /3i, /32 plane. The first diagram, prepared by Mr. A. J. Bhind at my suggestion, 

has been long in use.J For the present very carefully prepared and much extended 

diagram I have to thank my colleague, Miss Adelaide G. Davin, whose labours cannot 

fail to be appreciated by those having to handle practically statistical data. 

Since the publication of my original memoir on skew variation, many attempts have 

been made to express the nature of skew distributions by other systems of curves or 

by expansions in series. I have given careful attention to these competing systems 

and have discussed some of them elsewhere (‘ Biometrika,’ vol. IV., pp. 169 to 212). 

My chief objections to them arise from the fact that they either (i.) cover far less 

than the necessary area ; or (ii.) involve constants the probable errors of which can be 

indefinitely great; or (iii.) involve constants the probable errors of which have not 

been or possibly cannot be calculated. In no case that I know of have they syste¬ 

matically been applied to extensive ranges of data, and the goodness of fit compared 

with that of other systems. The existence of such competing systems is at any rate 

* See ‘Biometrika,’ vol. IV., p. 209, and vol. XI., p. 139. 

t Now collected in “ Tables for Statisticians and Biometricians,” issued by the Cambridge University 

Press. 

1 ‘ Biometrika,’ vol. VII., p. 131, 
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noteworthy evidence that to attempt to describe frequency by the Gaussian curve is 

hopelessly inadequate. It is strange how long it takes to uproot a prejudice of that 

character ! If the reader will turn again to the present diagram, he will see that the 

Gaussian frequency occupies a single point in an indefinitely extended area. Those 

who support the Gaussian theory have to prove that no distribution occurs at a 

distance from the point G of our diagram greater than could be accounted for by 

the probable errors of sampling of and /32. These errors are known and have been 

tabled'" and that position is'quite untenable. Frequency distributions occur every day 

which by no manner of means can be described by Gaussian systems. 

It has been said that my skew curves suddenly change their algebraic type and 

that the statistician is puzzled by a slight change in the constants (3X and (32 involving 

such radical changes in the equation to the type. But if the reader examines the 

present diagram, he will see that the main Types 1^, Ij, IL, IV., VI. and VIj occur in 

areas, while the remaining types occur in the critical curved or straight lines which 

bound these areas. Special cases like the Gaussian, the exponential or the rectan¬ 

gular distributions occur where critical lines intersect. Now all these critical lines 

are really critical in the sense that a change of important physical significance occurs 

in this neighbourhood, and it is very unlikely that physical changes will be 

unaccompanied by sharp algebraical changes of form, such as are directly obvious 

in my curves, but are disguised by discontinuities in some of the proposed alternative 

expressions in series, t 

Any one illustration that the frequencies which occur in actual statistical data can 

practically cover the whole possible area of the /3X, /32 planes, and can present 

frequency distributions which change abruptly in type, will suffice to confute both 

the argument that frequency is concentrated in or near the Gaussian point, and the 

argument that it is undesirable that skew-frequency curves should be so manifold in 

form, although how they are to change from U to J, to “ cocked hat,” to rectangle 

and to exponential forms without this abrupt change will be a puzzling problem to 

solve for the professed mathematician. An illustration of this character has been 

several times referred to in the course of this paper. Let us suppose there exists 

,an indefinitely large population, each individual of which carries any number of 

characteristics which are correlated together, for simplicity we will say according to the 

normal law. We may suppose that there are enough pairs of characters to give all 

values of the correlation p from +1 to —I. 

* ‘ Tables for Statisticians and Biometricians,’ pp. 68-71. 

t An analogy might be given in the case of the expression of a “ cocked-hat ” shape of finite range 

and a U-shaped distribution by a single Fourier’s series. Here the trigonometrical expression by the 

Fourier’s series would be superficially the same if kept in symbolic form, while the algebraic form of the 

U-curve would require two vertical asymptotes*and its equation would be wholly different from that of 

the “ cocked-hat’ form. The Fourier expression would only disguise the real discontinuity. In the same 

manner real discontinuity of form is disguised in the series which express skew frequency in terms 

of a long series of moment coefficients. 

3 Q 2 
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Now from this population we will take a large number m of samples of n 

individuals. If in each one of these samples we calculate the correlation, r, between 

two variates, then r will not be equal to the value of p in the sampled population, but 

the m samples will give a frequency curve for r, which is limited in range between 

+ 1 and —1 and is determined by n the number of individuals in the sample and by 

p the correlation of the characters in the indefinitely large population sampled. We 

thus obtain a doubly infinite series of frequency distributions. The general theory of 

such distributions has been worked out by “ Student ” (‘ Biometrika ’ vol. VI., p. 302, 

et seq.), Mr. H. E. Soper (Ibid., vol. IX., p. 91, et seq.), and Mr. ht. A. Fisher (Ibid., 

vol. X., p. 507, et seq.). The actual forms of the frequency curves are not usually 

expressible by simple single functions, but the ordinates and the /3l5 /32 admit of 

numerical determination. The calculations are extremely laborious, but up to the 

present the members of my laboratory staff have calculated some 270 frequency 

curves with nearly 40 ordinates each for values of p ranging from 0 to 1, and of 

n from 2 to 400. The great bulk of these curves show no approach to normality. 

The values of j31} /32 range from points on the B-line down to infinity, the distri¬ 

butions contain concentrated blocks, U-shaped curves, J-shaped curves, rectangles, 

trapezoid-like forms and every variety of skewness in doubly limited range curves. 

Only in cases where n is very considerable and p is neither a positive nor a negative 

high correlation is there an approximation to the Gaussian. For a series of curves 

in which f31 can be 5 and fi>2 = 9,—or both, if we will—ten times these amounts, 

it is idle to talk about the value of the Gaussian curve (/3i — 0, f32 = 3) in describing 

variation. These frequency curves can be actually obtained by experimental sampling, 

although the process is laborious, and indeed were so obtained in the first place.# 

They arise from observation and experiment. The remarkable point about them is 

that they illustrate all the types we have been discussing and justify sharp transitions 

in algebraic forms by showing that such transitions correspond to actual physical 

facts arising from experimental statistical data. The whole illustration, details of 

which will shortly be published, indicates the evil of implicit reliance on a classical 

theory, 

The Gaussian theory of error has, with great weight of authority, been applied to 

determine significant differences in statistical constants. The theory of the 

“ probable error ” must be justified in the case of each statistical constant to which it 

is applied. Psychologists have been busy discussing the differences found in mental 

correlations deduced from small samples on the basis of significance judged by the 

Gaussian theory of probable error. That theory has practically no application, as the 

“ probable error has really no meaning in the case of the bulk of the samples dealt 

with. Applications of the theory of probable error in other sciences than psychology 

to experimental results based on small samples will readily occur to the reader. The 

conclusions may be correct or incorrect, but they are unquestionably based on an 

* ‘ Biometrika,’ vol. VI., pp. 305-7. 
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inflation of the Gaussian point, G, to cover all that may be happening in the whole 

area of possible /31} /3a points in our diagram. It cannot at present be too often 

emphasised that such inflation is illegitimate, and that, as Dr. Isserlis has recently 

indicated,* the assumption that the distribution curves of statistical constants follow 

the Gaussian curve is not legitimate, especially in the case of “small samples,” which 

not only for many commercial purposes, e.g., experimental brewing, but in numerous 

branches of science, e.g., psychology, astronomy, and even physics, are all that 

economy of money or time permits of being recorded. 

* ‘ Roy. Soc. Proc.,’ A, vol. 92, p. 23. 
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(I.) Introductory. 

It is a curious fact that although our knoAvledge of the structure of the finest 

spectrum lines may now be said to rest on a secure theoretical and experimental 

basis, little is known of the distribution of energy in the broadened spectrum lines 

which are produced under certain conditions of excitation, or the exact circumstances 

which control their broadening. The researches of Lord 11ayleigh,# Michelson,!' 

Buisson and Fabry,} and others have shown that in gases at low pressures, when 

excited by uncondensed electric discharges, the width of the spectrum lines emitted 

can be accounted for completely and satisfactorily by the translatory motion of the 

* ‘ Scientific Papers,’ vol. I., p. 183 ; ‘ Phil. Mag.,’ 29, p. 274, 1915. 

t ‘Phil. Mag.,’ 34, p. 280, 1892 ; ‘ Astrophys. Journ.,’ 3, p. 251, 1896. 

\ ‘Journ. de Physique,’ vol. 2, p. 442, 1912. 
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radiating particles, in accordance with Doppler’s principle. Measurements of the 

width of such lines are carried out with the interferometer, the measurement 

consisting of a determination of the limiting order of interference at which fringes 

can be seen. This limiting order of interference is given by the equation 

N = K (M/T)1/a where N is the limiting order of interference, M the mass of the 

luminous particle in terms of the hydrogen atom, T the absolute temperature and K 

a constant. This equation is derived from a consideration of the Doppler effect 

produced by a distribution of the velocities of the radiating particles in accordance 

with Maxwell’s law, and its experimental verification by Buisson and Fabry'snows 

not only that under the conditions specified the widths of the lines are completely 

accounted for, hut also that the distribution of intensity in the lines is given by the 

well-known probability law. Under these conditions it is further shown that the 

limiting order of interference is constant for all lines and all series of the same 

element. Thus the same value of N is found for the helium and the parhelium 

series, and in the same manner for the Balmer series and lines of the secondary 

spectrum of hydrogen. 

With any departure from the specified conditions of low pressure and excitation by 

uncondensed electric discharge the law breaks down, and the lines broaden in an 

apparently anomalous manner. The characteristics which lead Ilyin;erg to adopt 

the terms diffuse and sharp series appear, the higher members of a series undergoing 

the greater degree of broadening. Matters are complicated by the fact that the 

broadening is in many cases unsymmetrical, and in addition we must take into 

account the fact pointed out by Boyds,# that different members of the same series 

may be unsymmetrically broadened in opposite directions. Thus ill the case of the 

first subordinate “ triplet ” series of barium, the members consisting of triplet and 

satellites at AA 5819-5424 are all unsymmetrically broadened towards the red, whilst 

the members of the succeeding triplet (and satellites) and AA 4493-4264 are unsym¬ 

metrically broadened towards the violet. Boyds shows that similar phenomena occur 

in the spectra of calcium and strontium, and points out the importance of the 

phenomena in relation to the pressure shifts of the lines in question. There can be no 

doubt of the intimate relation between the direction of the asymmetry and the 

pressure shift, since it has been shown by St. John and Ware, Fabry and Buisson,f 

and by Gale and Adams| that iron lines which broaden unsymmetrically towards 

the red are displaced by pressure towards the red, whilst lines which are unsym¬ 

metrically broadened towards the violet are displaced by pressure towards the violet. 

It is well known that broadening of spectrum lines can be produced either by an 

increase of the pressure of the luminous gas or by the use of highly condensed 

discharges as a means of excitation, and although the two conditions are different 

* ‘ Astrophys. Journ.,’ 41, p. 154, 1915. 

t ‘Astrophys. Journ.,’ 36, p. 14, 1912; 31, p. Ill, 1910. 

| ‘Astrophys. Journ.,’ 37, p. 391, 1913. 
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the phenomena of broadening which result appear to be similar. In a previous 

investigation it has been pointed out by one of the authors that from a consideration 

of the general characteristics of the broadening it appears difficult to refer the 

phenomena to the movements of the luminous particles as a whole, but rather that 

effects more intimately connected with the problem of radiation must be concerned. 

A recent suggestion by Stark* as to the cause of the broadening appears to be in 

harmony with the experimental results at present available. 

(II.) The Stark Effect in Relation to the Broadening of Spectrum Lines. 

Stark! has found that when a luminous source is placed in a powerful electric 

field the radiations are resolved into components in a manner analogous to the Zeeman 

effect in a magnetic field. The separation of the components in an electric field 

appears to be related in some way to the atomic weight of the element, the greatest 

effect being observed in the case of the Balmer series of hydrogen, and the diffuse 

series of helium. The separation is of another order of magnitude to the corresponding 
° 

magnetic separation. Thus at X = 4000 A.U. the separation of the outer components 
o 

of a normal Zeeman triplet in a field of 30,000 Gauss is about 0'5 A.U., whilst for the 

hydrogen line Hy in an electric field of 30,000 volts x cm.-1, the outermost components 
o 

are separated by 13'0 A.U. Stark considers that the broadening of spectrum lines 

at high pressures and under powerful conditions of electrical excitation is intimately 

connected with the electrical resolution of the lines, being in fact due to the electric 

effect of neighbouring atoms on the luminous particle. The phenomena appear to be 

strictly analogous. Stark also points out that the electrical separation of the 

components increases with the term number in a series, just as the broadening also 

increases. The electrical separation is greatest for lines of diffuse series, which 

also undergo the greatest broadening. Further, lines in the spectra of helium and 

lithium which are unsymmetrically broadened are also unsymmetrically resolved in the 

electric field.J 

It is evident that in order to obtain further evidence it is necessary to determine 

experimentally the distribution of intensity in the broadened spectrum lines, since we 

may predict (on this view) from the separation and intensity of the components in an 

electric field, the distribution of intensity to be expected in the broadened spectrum 

lines. In a previous communication§ a method of investigating the distribution of 

intensity in broadened spectrum lines was described, and it was shown that the results 

*- ‘Elektrische Spectralanalyse Chemischer• Atome,’ 1914. See also ‘Ann. der Phys.,’No. 18, p. 193, 

1915, in which the latest results for the Balmer series of hydrogen are given. 

t Loc. cit. A valuable discussion of the subject has recently been published by Fulcher (‘ Astrophys. 

Journ.,’ 41, p. 359, 1915). 

\ Reference may be made to the recent work of A. J. Dempster, ‘ Ann. der Phys.,’ 47, p. 791, 1915, 

who has investigated the breadth of spectrum lines with the interferometer, a method which the writers 

consider to be unsuitable for reasons given below. 

§ ‘Roy. Soc. Proe.,’ A 92, p. 322 (1916). 

3 R 2 
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obtained for the hydrogen lines Ha, H^, and Hy were qualitatively in accordance with 

the intensity distribution to be expected on the view that the electric field of 

neighbouring atoms was responsible for the broadening. The present investigation is 

concerned with the quantitative determination of the distribution of intensity in 

broadened spectrum lines, with the view of throwing some further light on the nature 

of the broadening and the circumstances which control it. 

(III.) The Methods of Measurement. 

It is at once evident from the complex nature of the phenomena that a measurement 

of the limiting' order of interference at which fringes can be seen for the broadened 

lines will bt# of little value in determining the intensity distribution. If the intensity 

distribution could be exactly predicted on theoretical grounds, it might be possible to 

verify the theory by measurements with the interferometer, but even in this case 

serious difficulties might arise if the intensity distribution curve were not of some 

simple form. In a recent investigation King and Koch* have described a method 

of investigating the structure of spectrum lines. The method adopted by these 

investigators consists in photographing the spectrum under a high dispersion, and in 

obtaining a curve relating the density of the image on the photographic plate to the 

wave-length. This is accomplished by causing the plate to move slowly in front of a 

slit through which light from a constant source is passed, and by continuously recording 

the resulting changes in the intensity of this light by a method involving the use of 

the photo-electric cell. The method has yielded valuable results in the study of the 

variation in the character of spectrum lines under different conditions of excitation, 

but it would appear difficult to employ a method of this kind to determine the 

quantitative intensity distribution in the lines on account of the eccentric and 

somewhat anomalous relations which determine the form and density of photographic 

images. In adopting a photographic method for quantitative investigation the 

following phenomena have to be taken into account 

(I.) There is no linear relation, and indeed no very definite relation, between the 

density of the image on a photographic plate and either the intensity of the light 

which produces the image or the duration of the exposure. The relation varies with 

different brands of plate and is affected by the chemical treatment of the plate in 

developing the image. An extreme case occurs when the image becomes solarized, 

or over-exposed to such a degree that it is no longer capable of development, a 

phenomenon well known to spectroscopists as the cause of the spurious reversal of 

spectrum lines. 

(II.) The product of the intensity of the light by the time of exposure does not 

produce a constant value of the density of the photographic image, that is to say, a 

* ‘Astrophys. Journ.,’ 39, p. 213, 1914. 
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different density is obtained by doubling the intensity of the light and halving the 

time of exposure. 

(III.) The sensibility of the photographic plate varies for different wave-lengths. 

This, of course, depends on the particular kind of plate used, but may be neglected 

in the investigation of broadened emission lines, since the sensibility of the plate may 

be taken as constant over the short range of wave-length covered. 

(IY.) Irradiation, or spreading of the image on the photographic plate, which has 

recently been the subject of a quantitative investigation by TugmanY Owing to 

the scattering of light by the grain of the plate the size of a photographic image 

increases with the time of exposure or the intensity of the light. 

It is therefore evident that if quantitative measurements are to be made by a 

photographic method, the method adopted must comply with the principle,f that two 

sources of light or two regions of illumination can only be considered to be of equal 

intensity when they produce the same degree of density in the same time on portions 

of the same photographic plate. It is believed that the method adopted in the 

present investigation fulfils these conditions and is independent of the eccentricities 

of the photographic plate. 

An accurate wedge of neutral-tinted glass, cemented to a similar wedge of clear glass 

so as to form a plane parallel plate, was mounted immediately in front of the slit of 

a spectroscope, in the manner commonly used for determining the sensibility curves of 

photographic plates. Under these conditions the spectrum of a discontinuous source 

thrown on to the slit through the neutral wedge is seen to consist of lines which are 

bright at one end, corresponding to the thin end of the wedge, and gradually fade off 

towards the region corresponding to the thick end of the wedge. The apparent 

length of a line depends on its intensity, and the relative intensity of two adjacent 

lines can be determined by measuring the lengths at which they can just be seen. 

Since in broadened spectrum lines the intensity, generally speaking, falls off more 

or less regularly from the maximum of intensity, a broadened line appears, with 

the arrangement described, as a wedge, the apex of which corresponds to the point 

of maximum intensity. By a measurement of the shape of the photographed image 

of such a wedge, it is possible to calculate the distribution of intensity in the 

broadened line. It is only necessary to pick out points of any convenient density 

which can be recognised, and to measure their height from the base of the wedge. 

The method therefore conforms with the conditions that have been laid down, and is 

independent of the eccentricities of the particular plate used or its subsequent 

treatment. Since the density which can be most easily recognised is small, it is 

evident that the results will not be vitiated by irradiation provided that the spreading 

due to irradiation from the centre of the base of the wedge is small in comparison 

* ‘ Astrophys. Journ.,’ 42, p. 331, 1915. 

f Cf. Houstoun, ‘Roy, Soe. Edinburgh Proc.,’ 31, p. 521; 1911. 
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with the total width of the base. It is therefore necessary that the dispersion of the 

spectroscope should be sufficiently great in relation to the width of the lines. In the 

present investigation the lines measured have been of such a breadth that this 

condition is amply fulfilled, and, moreover, the photographs show that this is the case. 

At the maximum in the base of the wedge the image is spread out. If, however, the 

dispersion of the spectroscope is sufficiently great this spreading is no longer visible 

at the edges of the base of the wedge. An exaggerated drawing of the effect of 

irradiation on the wedges is shown in fig. 1. In “ A ” the effect of irradiation is seen 

at S, but at P and Q, which represent the boundary of the wedge and the 

“ recognisable density,” the effect is no longer visible. In “ B ” it is evident that the 

B 

effect of irradiation is not eliminated, and that a higher dispersion must be employed if 

reliable measurements are to be made for the line in question. 

(IV.) Experimental. 

For the production of the spectra investigated condensed discharges were employed 

from an induction coil capable of giving a ten-inch spark in air, and in parallel with 

a condenser having a capacity of 0'0025 microfarad. In the case of hydrogen the 

condensed discharges were passed between aluminium or platinum points in a glass 

vessel containing hydrogen at atmospheric pressure. In the case of helium a vacuum 

tube containing the gas at a pressure estimated at somewhat above a millimetre of 

mercury was employed, and in this case a spark gap was put into the circuit. The 
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spectrum lines produced under these conditions are of such a breadth that the dispersion 

of a single prism spectrograph was found to be sufficient. The spectrograph consisted 

of a large model constant deviation spectroscope by Hilger with a camera attachment. 

The neutral wedge, which was supplied by the same firm, was fastened on to a dia¬ 

phragm which was fitted in grooves immediately in front of the slit. The slit width 

used was 0‘025 mm. The width of the slit might necessitate a correction in the 

interpretation of the photographs, but since in the present case the greatest correction 

would be less than one per cent, of the width of the base of the wedge, it may for the 

present purpose be neglected. The curvature of the spectrum lines obtained with 

prism spectrographs has also been considered as a possible source of error, but this also 

was found to be negligible over the length of slit in use. 

The greatest care was taken to ensure the even illumination of the slit, since this 

might give rise to serious errors. In the case of vacuum tubes there is no difficulty 

in ensuring this, and in every case the even illumination of the slit was verified before 

the wedge was put into position. In the case of the spark discharges through 

hydrogen at atmospheric pressure, the light was concentrated on to the slit by means 

of a sphero-cylindrical condenser, and in some cases a piece of ground glass was 

interposed as a further precaution. Wratten and Wain weight's panchromatic 

were used, and were in some cases intensified with mercuric bromide and sodium 

sulphide after fixing. Enlargements were then made on to bromide paper with an 

enlarging apparatus provided with a Zeiss-Tessar lens, which gives no appreciable 

distortion over the field required. Since, however, it is in general more easy to work 

with a negative than a positive, the enlargements were usually carried out in two 

stages, the first enlargement being made on a Wratten “ process ” plate or a Paget 

“ half-toneplate, and the second enlargement on bromide paper. 

There remains the personal error in picking out the points of equal density. It is 

believed that this has been almost entirely eliminated by enlarging the plates through 

a ruled process screen, the resulting image thus consisting of fine black dots on a 

white ground. In this way measurements may be easily made by pricking out the 

last dot visible at a large number of points on the wedge, and subsequently drawing 

a curve through these points. The extreme dot visible is a very definite point and 

the drawing of the curves is thus reduced to an almost mechanical process, whereas 

the recognition of points of equal density on photographs, which have not been 

prepared in this way, is a matter requiring considerable practice and would undoubtedly 

be a source of error. 

For investigations of a more qualitative nature of the spectrum of lithium, a concave 

grating spectrograph was used. This instrument consisted of a concave grating of 

four feet radius of curvature and 20,000 lines to the inch and was mounted according 

to the arrangement described by Eagle,# the dispersion being about 10 A. IT. per 

millimetre. 

* ‘ Astrophys. Journ.,’ 31, p. 120, 1910. 
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(V.) Theoretical Discussion. 

We may now consider the mathematical interpretation and analysis of' the curves 

obtained. 

1. A critical intensity of illumination Ic must exist, such that any intensity smaller 

than Ic, falling on the plate under the conditions of, and for the time occupied by 

the exposure, does not produce an effect which can be perceived by the eye. More 

generally, it would be equally convenient for many purposes to define Ic as the intensity 

which will produce any specified amount of blackening on the plate, and in the 

method adopted the amount of blackening specified will represent a dot which is just 

visible on the enlarged photograph. For, as will appear later, the loci of all the points 

of equal blackening on the plate, due to one component, form similar curves, which 

only differ in regard to the values of the constants contained in their equations. In 

determining the general nature of the curve given by any line—and therefore the law 

of energy distribution in the original image of the slit without incidence on the wedge 

—this more general conception of Ic is sufficient. 

It has been pointed out that the type of broadening of a spectrum line from a gas 

at low pressure and excited by uncondensed discharges is in accord with discussions 

based on the theory of probability, following the law 

I = I0e-^, 

where I0 is the intensity at the “ centre ” of the line—only the case of symmetrical 

broadening is at present contemplated—and I the intensity at a distance x from the 

“ centre,” measured on the wave-length scale, and k a constant. 

The assumption has usually been made hitherto that the broadening associated 

with the condensed discharge also followed the probability law, although the actual 

amount of broadening is of another order of magnitude under suitable conditions. In 

fact any other supposition raises difficulties in the physical interpretation according 

to any suggestions yet put forward. It has never been implied that the effect may 

not be complex, and due to the joint action of several causes. The broadened line 

might therefore be formed by the superposition of several probability curves—one 

arising from each cause—and the resultant intensity law might then cease to be of 

the usual type, although that type pertained to each of its components. Cases of 

unsymmetrical broadening can also come into the scope of such a view. 

Perhaps the most fundamental result which emerges from a preliminary inspection of 

the plates is the necessity of abandoning this view. The plates contain photographic 

records of the intensity curves—showing variation of intensity with wave-length— 

across certain lines, and although the traces on the plates are not the actual intensity 

curves, which may be derived from them by a simple formula, yet abrupt changes of 

curvature in the intensity curves must be accompanied by similar changes on the 

plates. In other words, the number of separate components, whatever their origin, 
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in a broadened line is represented on the photographic plate, after passage through 

the wedge, by an equal number of “kinks” in the bounding curve of the darkened 

patch, provided, of course, that the separations exceed certain limits. A smooth 

curve, containing no abrupt change of curvature—shown, for example, very definitely 

in the upper part of the plates for the line Ha (Plate 2)—indicates either a regular 

law of intensity in the corresponding portion of the original spectral line, or a number 

of components of very small separation. If in passing across the line, on the wave¬ 

length scale, a place was reached where, through the presence of a new and sufficiently 

separated component, a definitely new law of intensity appeared, a kink would be 

found on the final plate in the corresponding position. No such kink occurs in the 

upper portion of the Ha curve, which therefore presents us with one of these 

alternatives. A first inspection indicates that, for some value of n, yn = Ax should 

be a good approximation to the shape of this curve, where A is positive, the axis of x 

being that of the curve and the origin being at the vertex. 

The curvature is away from the axis of x, so that dyldx increases with x, and 

d2yldx2 is positive. Thus n is less than unity. The curve is, in fact, not unlike the 

two branches of a semi-cubical parabola, in which n = f. This property of curvature 

away from the axis is general throughout the plates, as a casual inspection shows, in 

all regions where the curvature appears fairly continuous, and therefore determined 

by only one or by several very close components in the primary broadened line. A 

single component must therefore ultimately produce, after passage through the 

wedge, a curve whose equation is at least approximately of the form 

yn cc x, 
where n is less than unity. 

Consider now the curve to be expected for a component satisfying the probability 

law of intensity. 
T = T e-*2*2 

where I0 is the intensity of its centre, and x is the distance of the intensity I from 

the centre. The wedge diminishes intensity in an exponential manner, and can be 

defined by a constant p such that, if an intensity Ii falls on the wedge, traverses a 

thickness and emerges as an intensity I2, Ig/C = e~p\ The intensity I is diminished 

to Ic, the critical intensity already defined, by a thickness of wedge given by 

Ic = Lr" = 

In the figure (fig. 2) ABCD represents the lower surface of the wedge, AB being 

the intersection of the upper and lower faces, where the thickness diminishes to zero. 

The shaded area on the lower face of the wedge denotes the final record of the 

broadened line, whose plane was originally parallel to the lower face and above the 

upper. Around the boundary of this shaded area the intensity is everywhere Ic, 

VOL. CCXVI.-A. 3 S 
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through the combined action of the exponentials of arguments —Jc2x2 and — 

respectively. At X and Y, for example, >7 = 0, since no wedge has been traversed, 

and therefore, if XY = 2D, 

Ic = Iue-A"2Dt 

In fact, X and Y are the traces of the extreme ends (photographically extreme) 

of the original line, and 2D would be its photographic breadth in the absence of 

the wedge. 

At the apex Z of the shaded area, on the contrary, x = 0, for it corresponds to 

a point on the central axis of the original line. If therefore H is the height of the 

curve, 
T _ T .9 —pH tan a 
±c -L0C' ? 

where a is the angle of the wedge, for >7 = H tan a for the point Z. If y is the 

distance of any other point P, on the boundary of the area, from the line AB, and x 

its distance from the axis OZ of the curve, then x is also the distance from the centre 

in the original line, of the light affecting P, and y tan a is the thickness of wedge it 

has passed through, so that if (x, y) are the co-ordinates of P, referred to an origin 

at the intersection of base and axis, 

T — T p-lc!x--Py tana 
-*-c -L0C' ) 

or 

whence, eliminating k2, 

— T ,-OT _ T -pH tan a 
-*-0° -L0C' ? 

h2x2 + py tan a = ZrD2 = pH tan a, 

Ha?2 + D“ (y—H) = 0, 

and the curve on the plate should be parabolic. An obvious change of axes reduces 

this to 
y*!x = D3/H. 

But we have already seen that, if the curve is yn cc x with this choice of axes, n is 

less than unity from all the plates. We must conclude that the law of intensity for 
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a single component, or a set of close components, broadened by the condensed 

discharge, is not a probability law. Whatever it may be, it must be far removed 

from this, for the curvature of every curve on the j)lates is diametrically opposite to 

the requirements of the law. We are therefore not dealing with a case in which 

the law ceases to be a good approximation, but with something fundamentally 

different. It is evident that broadening due to a condensed discharge has no relation 

to the ordinary phenomena, and that the uses made of these phenomena, for example, 

by Buisson and Fabry, are definitely inapplicable if the conditions of excitation 

are those of a condensed discharge. This definite conclusion serves to remove several 

anomalies which have arisen in connection with the application of interference 

methods to spectral lines, but which need not be classified in detail here. 

In view of this failure of the ordinary superposed probability curves towards an 

explanation of the laws of intensity found in these experiments, it is necessary, before 

proceeding to a detailed examination of the plates, to give the general theory of the 

experiment, which from a mathematical point of view is simple. With the notation 

selected above, let I0 be the intensity on the axis of a spectral line, and let the law 

of variation from the axis be f(x). Then the intensity at a distance x along the 

wave-length scale is l0f(x)/f(0). For example, in the preceding case f (x) — e~k~x" 

andy(o) = 1. A depth >7 of wedge reduces this to I0f (x) e~pri/f (0). 

If H is the height and 2D the breadth of the resulting image on the plate, 

Ic = Io/(D)//*(0) = I0e-pHtan“ 

and 
f{x)ff{ D) = epy tan 

Using a function \fs(:x) instead, where — as being more convenient 

for calculations, equally general, and more suited to the physical necessity for an 

exponential type of law 

'A(D) — A (O) = pH tan a = \js {x) — \fs (0)+py tan a. 

Referring the curve to new axes at its vertex, as in the case already discussed, 

transferring the origin through a distance H, reversing the axis of y, and finally, 

interchanging the axes of x and y, we obtain 

i/r (y) = px tan a, 

and the law of intensity denoted by \fs can be found if the equation of the curve on 

the plate is determined. For example, if the photograph has the equation 

y"/x = constant. 

3 s 2 
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where n is a definite number, \fs (y) cc yn} and f(x) = e = e <lx\ where q is constant. 

The law of intensity in the original line is therefore 

I = IQe~qx\ 

being the probability curve when the final curve is a parabola. A case of obvious 

interest is that of an ordinary exponential distribution of intensity 

I = \e~qx, 

where q is constant, in the original line. The equation to the photograph would 

then be 
qy = px tan a, 

so that it becomes a straight line, from which the value of q could be measured 

at once when the optical properties of the wedge, defining p and a, are known. This 

equation, of course, like those preceding, applies to one side of the photograph only, 

the other side being the optical image of the first in the axis of the photograph. 

For example, the present case would present, as the complete boundary, two straight 

lines intersecting at the apex of the curve, and inclined at an angle closely given 

by 2pa/q, where a. is the small angle of the wedge. 

If the law were partly exponential and partly of the probability type, or 

I = I0 exp (— k2x2—qx), where k2 and q are positive constants, the graph on the plate 

would become 
k2y2+qy = px tan a, 

and it is easily demonstrated that this is a parabola exactly similar—and, in fact, 

equal—to the parabola obtained when q = 0, but shifted on the plate so that its axis 

has moved parallel to itself. The curve is therefore still symmetrical about its axis 

and curved towards it, so that this mixed law is incapable of explaining the 

characteristics of the photographs even on general grounds. In fact, the constant q 

has no influence on the radius of curvature. It would, however, have an influence 

if the law with which the simple exponential is combined were anything other than 

the law of probability. 

This lack of influence of q, however, only applies to corresponding points, and 

in order to avoid misconception, a more complete account is necessary, for the curve 

as seen on the plate would actually appear flatter and be of smaller extent. At the 

same time it undergoes a sudden change of curvature at the vertex. In the annexed 

figure (fig. 3) the dotted curve is the parabola which would be obtained when q = 0. 

The other parabola ABODE is the shifted parabola obtained when q is not zero, 

as explained already. ' But only the portion ABC appears on the plate, for the 

axis OX cannot be disturbed by the presence of the new exponential factor, which 

must also lessen the height of the curve to the value CX. What is actually seen 

is ABC and its image in OX, or the shaded area in the figure bounded by two arcs 
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of parabolas whose vertices are not at C, which therefore exhibits a sharp peak. In 

fact, the original dotted parabola really consists of arcs of two parabolas which 

happen to he coincident when q — 0, and the analysis always applies only to one side 

of the axis, as was emphasised earlier. 

The interaction of two laws of energy distribution in a line, one being the simple 

exponential law, could therefore explain the peaked appearance at the vertices of the 

photographs, but it is incapable of explaining the nature of the curvature if the 

other law is that of probability. It is evident on inspection of corresponding points 

why one curve is flatter than the other, although the parabolas are equal. 

On the supposition that Ha is not complex in these experiments (a supposition 

which is ultimately disproved), it is a matter of practical importance to isolate the 

simple exponential law which may be superposed on any other, and although the 

curves appear, in their continuous parts, to follow a law of the form yn oc x, we must 

assume, in view of their peaked nature, that the best representation in terms of one 

component will be 

yn+$y = fa, 

where $ and (3 are constants, n being less than unity. The curves, when of continuous 

curvature, are obviously so nearly straight lines—as, for example, in the upper part 

of the curves for Ha—that the simple exponential law is evidently the predominant 

feature, and much analysis is thereby saved. For, as a first approximation, y = 6oc/$, 

and the second approximation is easily found to be 

fa /3”xn 

y ~ 8 Sn+1 ' 
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The relation of these constants S and ft to the constants of the energy distribution 

of the original spectral line may be found as follows :—If the law of intensity 

distribution is 
I = ll>e-kx"-qx, 

around the maximum at x = 0, and if H and 2D are the height and breadth of the 

photograph, 
py tan a + kxn + qx — Z D" -f gD — pH tan a 

with reference to the old axes. Taking the new axes at the vertex, 

Thus 

and also 

kyn + qy — px tan a. 

S — q/k, ft = p tail a\k 

BH = Dre + Dd 

where 2D is the photographic breadth of the original spectral line. 

The actual photographs on which measurements have been made were previously 

magnified in definite ratios. For a magnification m, the equation of the upper portion 

of such a photograph as those of Ha would become 

ft'lXn 

It is necessary to determine whether a unique value of n exists through the 

photographs of one particular line, permitting the equations of the contours to take 

this form, in order to decide whether the line has one or more components. Ha is a 

suitable medium for this determination, and a succeeding section takes up this 

question. 

(VI.) The Effect of Dispersion. 

When the photographs are magnified on a large scale they all appear unsym- 

metrically broadened towards the violet. This is the effect to be expected from the 

fact that the spectrum produced by the prism is not normal, and it is necessary, before 

a detailed analysis of the photographs can be made, to calculate the asymmetry due 

to this cause and to compare it with the actual effect observed. A complete account 

of this problem is given below in connection with the best magnified photograph 

obtained for Ha. The dispersion on the original plate, before magnification, was 

known to be given very accurately by the formula 

X — A0 + kjJ{n-\-nft) 

o 

where A0 = 2257'5, C = 11 (3,802'9, A is in A.U., and n + n0 is in millimetres of the scale. 

T1 re scale reading for the centre of the pattern of Ida, A = 6563, is, therefore, on the 

original plate 
n + n0 = 116,802-9/(6563-2257-5) = 2713 mm. 
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We shall suppose provisionally that the law of energy distribution round the central 

component of the original line is the same on both sides, so that with equality of 

dispersion, the final pattern would be symmetrical. Let 6563 +a be the limiting 

wave-lengths which can just be seen on this pattern at the thin end of the wedge. 

Then the corresponding scale readings at the ends of the pattern are 

n + n0 = C/(6563 — A0 + a), 

or 
27'13 + Ca (6563-Au)-2 + Ca2(6563 —A0)-3. 

The length of the red end of the pattern is aC (6563 —A0)~2 —a2C (6563 — A0)~3 and of the 

violet end, aC (6563 — Au)~2 + a2C (6563 —A0)-3, neglecting higher powers. The difference 

is 2a2C (6563 — A0)-3 and the total length 2aC (6563 —A0)~2. If this total length is d, 

the difference becomes ad/(6563—A0) or (6563 —A0) d2/2C. By calculation, this becomes 

d2/54*26 in the present case, where d is in millimetres. 

This calculation is valid not only for the extreme thin end of the wedge, but for any 

thickness of wedge, for both the wave-lengths, 6563±a, have the same original 

intensity, and therefore disappear on the photograph at equal heights, corresponding 

to equal thicknesses of wedge traversed. We may now apply this result to one of 

the photographs of Ha (Plate 2).* 

This plate lias been reproduced by the half-tone process, which reproduces the 

dotted effect used in determining the boundary of the curve. The vertex of the 

curve* is well defined, and the axis must be parallel to the original slit, and can be 

determined precisely. The magnification in this case was x 33, and the breadth of 

the curve at its base is 59'0 mm. The breadth of the original plate was therefore 

59/33 = 17879 mm. Thus, 

d = 1*7879 mm. = v+'r 

where v and r are the breadths of the violet and red ends. 

Also 
v — v = d2/54*26 = 0*0589 mm. 

The difference on the photograph magnified 33 times is 0*0589 x 33 or 1*97 mm., but 

where, on this photograph, d — 14 mm. say, the difference is 1*97/16 or 0*12 mm. 

and could hardly be observed. Even the magnified curves must therefore look very 

symmetrical at some distance from the apex, and this is actually the case. An 

important corollary from this result is that the upper part of the curve can be used 

to give a geometrical construction for the determination of the axis of the curve. 

This method has been applied to Ha, to check the supposed position of its axis, with 

* In the reproduction (Plate 2) the whole of the paper is dotted, and the outline cannot therefore be 
traced exactly. In the original photographs used for measurement, the only dots visible are those which 
build up the magnified image, thus enabling the boundary to be precisely determined, 
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very accurate agreement. When the axis was thus verified, measurements of the 

breadth between the two extreme dots visible laterally were taken at various levels 

on the height of the curve. It is not thought necessary to give these measurements 

in detail, and perhaps one example will suffice. The measured distance between the 

extreme dots at the lower end of the photograph, where it is broadest, is 59'0 mm. 

as stated already, and the violet and red portions have breadths 30'5 and 28'5, 

measuring on either side of the axis. This difference is 2'0 mm. against the theoretical 

value 1'97. This agreement, typical of the agreement throughout, is a convincing 

proof that the broadened Ha is, in its energy distribution, absolutely symmetrical 

about its centre, and that the apparent asymmetry—only evident to the eye on the 

magnified photographs—is entirely due to the fact that the prismatic spectrum is not 

normal. 

This is the second fundamental result of the work—that the broadening of Iia under 

the condensed discharge is cm absolutely symmetrical one. 

To a high order of approximation, inequality of dispersion lengthens the breadth of 

the violet and shortens that of the red to an equal extent, so that their sum is the 

breadth of the curve with a dispersion uniformly equal to that at A6563. To draw 

a graph of the symmetrical curve for uniform dispersion, therefore, we merely require 

to measure the total breadth of the photograph for various heights, and plotting half 

total breadth against height, we obtain one side of the curve for uniform dispersion. 

Now the total height, from base to apex, of the Ha curve in question, is 192 mm., and 

the excess of breadth of the violet over the red end, even at the base, is only 2 mm. 

in a total breadth of 59 mm. The alteration in shape caused by this correction is 

therefore very slight, and can produce no appreciable tendency to a parabolic form on 

either side. The previous conclusion as to the absence of a probability law remains, 

therefore, unaffected. «. 

(VII.) The Complex Structure of II„ when Excited by Condensed Discharges. 

The symmetry of Ha being established, the two alternatives still remain. Ha may 

be a single component symmetrically broadened—to disprove this supposition is our 

immediate object—or a set of symmetrically-arranged but close components, each 

broadened in a symmetrical manner. The theory of this second case has not yet been 

given, and in assuming that it is a possible interpretation of the photographs, we are 

anticipating the theory given later. Confining attention for the present to the first 

alternative, and recalling that any law must, for physical reasons in the case of' 

emission, be of some exponential type, and from the appearance of the curves, mainly 

a linear exponential, we have the formula, for magnification m, 

V = 

fix 

T 
finxn 
<k+l 

m 1 -n 
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n being less than unity, and $ large and positive. The first condition, as regards n, is 

necessary to secure the curvature in the right direction. Now this could also be 

secured mathematically if n were greater than unity, and S negative, hut this case is 

a physical absurdity, for it signifies a law of intensity in the original light of 

the form 
I = 

where a and b are real constants, and n > 1. The intensity would then begin by 

decreasing from the centre, and finally increasing without limit. This is contrary to 

experience and also to physical possibility. But it is unfortunately the case to which 

we are led when an attempt is made to apply the formula to the curve for Htt. The 

following numerical example from one photograph makes this clear, and indicates at 

the same time that small changes in the measurements would not reverse the 

conclusion. 

/3/S at the vertex may be obtained with accuracy as the initial slope, and is found 

to be 0'0573, by a construction involving the result as a ratio of two large distances. 

The following points are on the curve, and distances are expressed in millimetres. 

x = 162'5 | x — 192‘Ofi 

y= 16T j y= 29'5 J 
and applying the formula we find, 

n - 5’97, S/m"-1 = -CT870. 
The mixed law, 

I = I0 e-qx~kx\ 

can therefore give no interpretation of the curves, and a more general conclusion is 

possible. For the result may be extended in the same way to a law compounded of 

three, when further measurements are made. It is not thought necessary to reproduce 

the calculations to this effect. The conclusion, therefore, appears inevitable that the 

details of the shape, and even the general form, of the curve Ha, are not compatible 

with the view that Ha contains only one component broadened, perhaps by various 

agencies, simultaneously by any physically possible exponential laws, the total 

argument of the exponential being additive in the complete law. We are compelled 

to seek an explanation of the curve in terms of several components whose individual 

curves are superposed, and are led directly to the Stark effect as the foundation of the 

whole phenomenon. Several qualitative reasons have already been advanced in favour 

of this hypothesis, and it now appears further that a quantitative study of the curves 

necessitates the same hypothesis. For if several components are to be admitted, only 

the Stark effect seems capable of providing them, and the fact that they must be 

symmetrical in Ha enhances this conclusion. The components are conspicuous in H/3 

3 T VOL. CCXVI.-A. 
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and some other cases, but in Ha a closer scrutiny is required to reveal them. In order 

to cover such cases the theoretical discussion has been made somewhat complete. 

(VIII.) General Theory of a Symmetrically Compound Line. 

If Ha has close components, the law of attenuation of each component from its 

maximum is now certainly that of the simple exponential, 

I = I0 e~gx, 

for the whole of the curve for Ha is very close to a straight line, and for nearly half 

its length is almost entirety straight. Afterwards it broadens convex to its axis, but 

not rapidly, and although so irregularly as to invalidate attempts to interpret it by a 

single exponential of any possible argument, the curvature is nevertheless at every 

y 

point away from the axis. Several close components with somewhat different rates of 

attenuation, but with axes nearly coincident, are at once suggested, and will be shown 

to provide a complete explanation of these peculiarities. No other exponential 

arrangement appears capable of doing so. 

As the components of Ha are symmetrically arranged, we consider first the effect of' 

a pair of equal components separated by an interval 2<x. 

Let I0 (fig. 4) be the axial intensity of either. A dotted line in the figure is mid¬ 

way between their axes, and is taken as the axis of y. Then at a point P of 

co-ordinate x outside both axes the intensity is I = I0 + I0 e_?(z+<r) = 2l0 cosh qae^qx 

and this would be produced by a single line of axial intensity 2l0 cosh q<r midway 

between. But at a point Q (x') between the axes the intensity is 

I = = 2lue~?<r cosh qx\ 
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following a different law. A wedge whose length lies along y would produce a curve 

of critical intensity Ic which, outside both axes, would have an equation 

or 

Ic = 2l0 cosh qae-qx-pyiana 

py tan a + qx — loge (2l0 cosh qajIc) 

and be straight. But between the axes the equation is 

or 

Ic = 2lu cosh qx . g-^-pytana 

py tan « = loge (2l,,/[c) —qa+ loge cosh qx, 

which is curved. We can verify at once from these equations that dyfdx is 

discontinuous and changes sign when x = <r, and that the form of the curve of 

intensity Ic is as shown in the figure (fig. 4). The summits of these curves, however, 

are not the summits which the separate components would individually show. The 

upper parts of the photographs of indicate this appearance very precisely, so that 

the strongest components of form a symmetrical pair. 

Before proceeding to the effect of superposition of such pairs, together with a 

possible central component, we must prove a very general theorem. The main 

characteristic of all the curves which have been photographed, not only of hydrogen 

lines, but of helium and lithium, is that they contain no point at which the curvature 

is towards the axis. In other words, if y is measured as in the last figure, d2yldx2 is 

always positive whatever the sign of dy/dx. Apparently the only exponential 

arrangement which is physically possible and possesses this property in general is the 

class of curves dealt with in the theorem. A proof of this statement would occupy 

some space, and we therefore merely prove that this class has the necessary 

property. 

Consider a set of lines, n in number, with any rates of attenuation qu q2, ..., qn, 

whose axes are coincident. Their central intensities are Il5 I2, ..., I„. If k = p tan a, 

the bounding curve of the photograph they produce is given by the equation 

r = n 

r = I 

when they are all simply exponential. Accordingly, by differentiating twice, 

3 T 2 
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whence, by eliminating dyjdx and ekq, we derive 

2 Ire xq'. 2 \rq?e xqr— ( 2 I rqre xq’) = k ^ {'Z I rqre xq 
\ 9 

Let X,. = Ire xqr, so that Xl5 X2, X„ are all necessarily positive by physical 

considerations. Then the sign of ddyfdx2 is that of 

n n f n \ 2 r — n s —n 

2 Xr. 2 \qr2- 2 \qr) = 2 2 XrX,(g-gs)2. 

This is a sum of squares with positive coefficients, and is essentially positive for all 

values of x. Thus d2y/dx2 is always positive. Even if some of the quantities qr were 

positive, this proof would be equally valid, and curves of equal density on the 

photograph would have d?y\dx2 positive at all points. 

The curves obtained with any of Stark’s resolutions, if the components followed 

the simple exponential law, would all be included in this class. For they involve a 

possible central component l0e~qx and pairs of components. A pair at points on the 

same side of both axes, if of separation 2<x, produces an intensity 2l cosh q<re~qx at a 

point x, where 21 cosh q<r is constant. At a point x between the axes the intensity 

is Ie~qa (eqx + e~qx), and the pair is equivalent to two central components, one increasing 

and the other decreasing. Any Stark resolution is therefore, under this law, 

equivalent to a set of components whose axes coincide, and the theorem follows. 

As already stated, this is the only possible exponential arrangement with the 

property in question, and this theorem in itself provides a very convincing argument 

in favour of the suggested theory of broadening, even when a close scrutiny is 

required to reveal the components. 

Let now a central component be superposed on a symmetrical doublet of separation 

2o\ If the suffixes 1 and 2 refer to the component and the doublet, the curve of 

intensity Ic is, between x — 0 and x — a, 

I^pytana _ qie-?i*+ 2l2e~q2lT cosh xg2 

and, between x = <x and x = oc} 

Xcepytana — I1e_ff|Z + 2l2e_?2Z cosh o-q2. 

The two branches meet at x = <r, and the ratio of the two values of dy/dx at 

x = a is 

ji - sinh *q2. /jl + cosh aq2. e~", 

which is obviously less than unity. It can be negative if I2 is sufficiently large 

compared with I1} and then the curve would have a sharp peak at x = <x. Otherwise. 
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there is only a discontinuity in the slope of the form shown in the figure (fig. 5), the 

dotted lines being parallel to x and y. 

If qx = q2, the lower branch is straight. 

We may pass at once to the general case of a central component and n doublets 

Y 

symmetrically arranged round it. Between the centre and x = o-j, an axis of the first 

doublet, the intensity curve Ic becomes 

lcepy tan “ = I(Je~z3"+ 2 2lr cosh xqr . e~q,<Jr. 
1 

Between this axis and one of the second doublet at x = <r2, 

n 

j^pytana _ +2I: cosh ql<rl . e_z?1 + 2 2lr cosh xqr. e-?r0V. 
2 

Between x = cr2 and x = <r3, relating to the third doublet, 

oo 

Icepytana = I0e_a:?o + 2l1 cosh q1a1 . e~I?1 + 2l2 cosh q2a-2. e~x92+ 2 2lr cosh xqr. e-?r<rr, 
3 

and so on. In any special case, the branches of the curve may be studied from these 

equations. The whole curve has discontinuities in dy/dx at x = o-1} <r2, ..., crn, and 

these may be of the form shown above, or actual peaks, such as can be seen in the 

photographs of which have been taken by this method. Much depends on the 

relative values of the quantities q for the various components. When a peak occurs, 

say at x = ar, it is easy to calculate the lowest depth of the curve between x = crr_1 

and x = <rr before it rises to the peak, and also the rates of slope from the peak, by 

differentiating the preceding equations. 

When there is no previous knowledge of the values of the q s or of the intensities, 

a complete mathematical analysis of the curve is extremely difficult when there are 
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several components, and this will not be attempted in the present paper in any 

individual case ; but much information can be derived by taking definite cases of the 

Stark effect and plotting the results which the present wedge should give. This is 

a more rapid method than direct calculations for determining the essential features 

which the curve should present under various circumstances. 

In his most recent paper, Stark has given the details of the various components 

of Ha as follows, although, in view of the difference in the conditions, we must not 

expect them to appear without serious modification in the present experiments. 

Under a field of 104,000 volts/cm. Stark finds for Ha: 

p components 
• -I 

s components 

No. of component. 
Separation 

(A.U.). Intensity. 

+ 3 + 11-'5 1-2 
+ 2 + 8-8 1-1 
+ 1 + 6-2 1-0 
-1 - 6-2 1-0 
-2 - 8-8 1-1 
-3 -11-5 1-2 : 

+ 1 - 2-6 1 
0 0 2-6 

- 1 - 2-6 1 

Now if a broadened line has an intensity I at its centre, and follows the simple 

exponential law, the quantity of energy in it is proportional to 

I e qx dx = I/q. 
Jo 

Stark’s lines are not broad, and intensity in such a case is rather a measure of 

contained energy than of central brightness, whatever the mode of measurement. 

The last column of Stark’s table, therefore, may be taken as a measure of I/q where 

I is the central brightness of a line. The distinction is immaterial if q is the same 

for each component. 

Now for the wedge adopted, it was known that if an intensity Ix passing through 

emerged as I2, and if 
iogM(iA) = x, 

then X = 0'2 + Q‘4y, where y was the distance from the thin, end, which was not 

indefinitely thin. But 
J _ J^g-pi/tana __ J Q-py tan a. logic e 

and therefore 
p tan a = 0‘4/logia e — Q'922, 

or practically unity. 
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The form of the curve for Ha, and in fact of all curves obtained, is not consistent 

with the supposition that g is the same for all components. There are two 

alternatives to consider in a very simple proof. If the separations are very minute, 

all points on the contour not between two components—or in other words all points 

except very close to the vertex, are outside all the component axes, and if q were 

constant throughout, all the boundary beyond a small distance from the vertex 

would take the form 

Iaepytan“ = (l0 + 2 2 Ir cosh go-r)e-9", 

and be entirely straight. This is not the case. In the second place, if the 

separations were comparable with Stark’s, the initial part of the curve would be 

j^pytana _ + 2 2 Ir cosh xq . e-9'7', 
r = 1 

and dyfdx = —q/p tan a. at x = 0, whereas near y = 0 in the final part of the curve 

outside all the component axes, the slope is again — g/p tan a, The initial and final 

slopes should therefore be equal whatever the nature of the kinks. This does not 

occur, and we must therefore conclude that the rates of attenuation of components 

are different. The same conclusion can be deduced in other ways from the curves. 

The rate of attenuation of the central component is given by the initial slope in all 

cases, if the separations are not so extremely small as to make this an indefinite 

quantity. From the photographs of Ha in the present experiments we find as the 

mean of several measurements, 

p tan alq = 0'057, 

whence q — 16‘2 for the central component, since p tan a = 0'922. 

It has been taken for granted that the separations in Ha are not minute, in 

accordance with later work. The detailed description of Ha will follow, our present 

object being the derivation of results applicable in general to the whole series of 

curves, with Ha as a convenient illustration. 

The values of q decrease as the separation of the components increases. This can 

be deduced from the fact that the final slope of all the curves to the axis of x (the 

base of the photograph) is smaller than the initial slope. For the final slope is 

derived from the final branch, 

and 

dy _ 

Icep1jUna = I0e~X9o + 2 2 2l„ cosh qn*n . e~iq\ 
r = 1 

a -p tan = -j Iog0e_x9° + 2 2 I„g» cosh qn<rn. e~yq' \\\ Iue x<?0 + 2 2 I„ cosh qnane xq‘ 
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or if IJqn = E, the measure of energy contained in a component determined by 

Stark’s tabular intensity, 

■p tan a 4^ = -fE0g02e~r?o+ 2 2 E;ign2cosh qn<rn. e 
(XX [ i 

-xq* E0g(Je xqa + 22 Enqn cosh <rnqn. e~xq“ ^, 

whereas the initial slope is given by 

—p tan a dy/dx = g0. 

The difference, which reduces to 

(2 2 qn (g0—gn) E„ cosh qnane gnX 'j j|E0g0e X5u+ 2 2 Eng„ cosh <7nqn. e I?*|, 

must be positive, which can only be the case in general if g0 > g„. Thus when a line 

showing the Stark effect is broadened, the components become more diffuse in the 

order of their separations in general. Their energy is more spread out, and even if 

two components have the same tabular intensity in direct methods of resolution as 

tine lines, their heights on the photographs by the present method of the condensed 

discharge may be very different. For these heights are not determined by the 

energies- in the components, but by their central intensities, which are proportional 

to their rates of attenuation g. It is now possible to understand at once the reason 

for the absence of peaks in the curve for Ha even when the energies of all the 

components may be strictly comparable with that of the central one. This increase 

of ‘‘spreading” of the components with their distance from the centre is to be 

expected from the fact that the change in frequency of the radiation from a specified 

particle depends on the degree of proximity of other charged particles, the distribution 

of which is subject to variations. If the arrangement of luminous and charged 

particles were not subject to some probability distribution, we should find sharp 

components as in Stark’s experiments. 

(IX.) Details of the Components of Ha. 

The theoretical boundary of the curve for Ha, on the basis of Stark’s results, has 

been plotted for various values of q attached to the different components, in order to 

discover the dependence of the curve upon these values. For values at all nearly 

equal, the curve consists of a series of sharp peaks of nearly equal height, separated 

by deep hollows ; and it is evident, therefore, that the decrease in the value of q as 

the components separate from the central one is rapid. I11 these circumstances, the 

kink in the curve loses its peak-like character and becomes a mere protuberance. 

Moreover its shape for any component ceases to depend to any extent on any other 

component but the two adjacent, and more particularly the upper one. The 
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illustrative case which has been selected is a fair approximation to the actual case 

of Ha, and contains both varieties of kinks. It is the upper part of the curve 

based on Stark’s numbers for intensity and separation, magnified in the ratio 33:1 

from the original theoretical photograph, and with a total height of 198 cm., 

arbitrarily selected, as the approximate height of the Ida photograph. The initial 

slope is taken also as that of the photograph, so that q() — 16'5 and p tan a = 1 .(quq2) 

for the first two other components are taken arbitrarily as 5 and 2, and (g:!, g4) still 

smaller, so that they have no appreciable effect on the first two kinks. 

The figure (fig. 6) exhibits the result of the calculations, the details of which are 

fairly obvious. The heights of the kinks are calculated and the slopes of the two 

branches at each. The trough preceding the first kink is calculated as a minimum 

height on its branch, and other points are plotted from the equations in the 

ordinary way. 

Stark gives the central component an intensity 2‘6, and the next two an intensity 

1 each. These are energy measures, and the central intensities of the broadened 

components are proportional to 2'6g0, 5qx, 2q2, or 42'9, 5, 2 respectively, and are 

represented by these numbers on a certain scale. The whole height, //., of the curve 

of intensity Ic is given by 

Ice'1 = 42T + 2 (5e~5cr' + 2e~2a-), 

3 u VOL. CCXVI.-A. 
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and h = 198/33 = 6 mm. on the original photograph, whence Ic is known on the 

same scale. The separations o-j, <r2 are those of Stark reduced to millimetres on 
o 

the basis 10 A.U. = 1 mm. valid in these experiments, and become crx = 0'26 mm., 

<r2 = 0'62 mm. 

The heights of the two kinks are and h2, where 

IceAl = 42’9e“16’5<ri + 2 {5 cosh 5o-i. e“5o'l + 2 cosh 2<r\. 

lceh~ = 42‘9e_16’5<r2 +2 {5 cosh 5crl ! e~5<r2 + 2 cosh 2<j2 . e~2<r-}. 

Multiplication by 33 gives the heights on the enlarged photograph. The values of 

dy/dx are calculated in a similar way. 

In the resulting diagram, the kink at B is still a peak, but its height is very small. 

Down to the immediate vicinity of B, the curve is hardly distinguishable from a 

straight line, and its change to B is very abrupt. BC is again practically straight 

until the vicinity of C is reached, and C is not a peak, but a protuberance. The 

curve becomes practically straight again after C. The point B ceases to be a peak 

if qi is rather less than 5, and begins to resemble C. 

Perhaps the main points of interest about the curve are, next to its approximation 

to that for Ha, the straightness of its branches and the smallness of the protuberances. 

But, in spite of their smallness, the method already described of using paper printed 

in a pattern of fine dots enables them to be detected readily by pricking out the 

final dot which is visible on the enlarged photograph. The distance between the 

protuberances on either side of the axis, divided by the magnification, gives at once 

twice the separation of the components from the central line on the original plate, 

and allows at the same time for the fact that the prismatic spectrum is not normal. 

It is to be noted that the ratios of the slopes of the nearly straight branches of the 

curve differ little from those of the values of q belonging to the components, when 

these values decrease so rapidly that the peaks become mere protuberances. 

Since the head of a protuberance on the curve lies necessarily on the axis of the 

component giving rise to it, the particular constant intensity which defines the 

contour is immaterial. If, therefore, a set of contours of various constant intensities 

are chosen on the plate, the heads of the various protuberances, one on each contour, 

due to any component, lie on a straight line parallel to the axis of the contours, or 

perpendicular to the base of the photograph. Protuberances of very small size can 

in this way be detected as such, without the risk of including slight irregularities 

in the contour which might be due to defects in the grain of the plate, and at 

the same time, the axes of the components can be defined with some degree of 

precision. 

We now come to the precise values of the separations determined from the 

photographs of Ha. The contour exhibits three definite protuberances on each side 

at the same heights, and satisfying the conditions just specified. Oil one of the 
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photographs of magnification 20'3 the breadths between the protuberances are 10'8, 

23'0, and 35*5 mm., respectively. These are in the ratios 1 : 2'13 : 3'29. The 

separation of the three closest components in Stark’s experiments* are 2'6, 6'2, and 

8'8 A.U., which are in the ratios 1 : 2'38 : 3'29. The agreement is striking. More- 

over the separation of the next component in Stark s experiments is 11*5 A.U., from 

which we deduce that the breadth at the next protuberance should be 477 mm. 

But the whole breadth of the base of the photograph is about 39 mm., and therefore 

with the degree of exposure given this component could not appear. The existence, 

therefore, of components whose separations are in the same ratio as those found by 

Stark appears to be established, and affords a strong confirmation of the view that 

the main factor which controls the broadening is the electrical resolution of the lines. 

The corresponding phenomena for are much more complicated, and the deter¬ 

mination of the attenuation-ratios and intensities of the components may, therefore, 

be deferred for subsequent treatment. 

(X.) The Diffuse Series of Helium and Lithium. 

The intensity distribution in broadened lines in the spectrum of helium has been 

investigated in the same manner as in the case of hydrogen, but the quantitative 

intensity distribution has not yet been determined. The spectrum was produced by 

passing condensed discharges through a vacuum tube containing helium with a 

spark-gap in the circuit. The results are qualitatively in accordance with the 

intensity distribution to be expected from the electrical resolution of the lines. The 

broadening of the line X = 4471 is particularly striking, and it appears to consist of 

a bright component of great intensity and a broader displaced component. Stark* 

has found that the electrical resolution of this line is unsynnnetrical and that the 

intensity of the central components is very small. Since it has been shown that the 

breadth of a component increases with its distance from the unresolved line, we should 

expect the above distribution of intensity in the line X = 4471. On the other 

hand, the line X — 4026 appears to consist of a bright central component with 

nebulous “ wings,” which is also in agreement with theory. 

It may be mentioned that by the use of the wedge method the relative differences 

in the intensities of the lines which occur when a condensed discharge or an 

uncondensed discharge is employed can at once be seen. In the case of helium this is 

particularly interesting. With the condensed discharge the two diffuse series are 

relatively much more intense than with the uncondensed discharge. It is remarkable 

also that by far the greatest increase in relative intensity is found to occur in the 

line X = 4471, whilst the D3 line, the preceding member of the series, is affected to 

a smaller degree. This result, whilst affording no explanation, indicates the possibility 

* Log. cit. 

3 u 2 
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of reproducing in the laboratory the intensity relations which are found in the spectra 

of certain stars, in some of which the line X = 4471 is the most intense of the helium 

lines seen, whilst under ordinary conditions of excitation by uncondensed discharges 

at moderate pressures the D3 line is the strongest line in the spectrum, and at low 

pressures the line X = 5015 becomes the most conspicuous. 

An investigation of the lines of the diffuse series of lithium with the use of the 

neutral wedge has not yet been made, but qualitative results for these lines, 

photographed with the concave grating spectrograph, confirm the view that the 

Stark effect is mainly responsible for the phenomena observed. It is, of course, 

impossible to control the experimental conditions when spectra are produced in the 

electric arc, and the results may be complicated by reversal. The peculiar character 

of these lines has been noted by numerous investigators. More especially the complex 

appearance of the line X = 4602 has been investigated by Hagenbach# and by 

Kamage. f If the vapour is dense, reversal may be observed in the line X = 6103. 

For less dense vapours the line X = 6103 is not reversed nor the line X = 4132, but 

the line X = 4602, which belongs to the same series and lies between these lines, gives 

the impression of an extremely unsymmetrical reversal. These appearances of the three 

lines have been recorded photographically on the same plate, using as a source of light 

a carbon arc containing a suitable quantity of lithium. It would appear extremely 

improbable that the apparent reversal of the line X = 4602 is real, since the lines 

preceding it and following it in the series do not show the phenomenon. This result, 

however, is precisely what we should predict on the supposition that the appearance 

of the lines depends mainly on the Stark effect. 

According to Stark (Joe. cit.) the electrical resolution of X = 6103 consists of a 

small displacement, but this result is probably incomplete. For the line X = 4602 the 

central undisplaced components, when the line is resolved, are either very weak or 

absent, and the displaced components are unsymmetrically arranged with respect to 

the unresolved line in the same direction as the asymmetry of the line as seen in the 

arc. In the case of the line X = 4132 there are components of considerable intensity 

very slightly displaced from the unresolved line. A minimum unsymmetrically 

localised in the broadened line is therefore precisely what we should expect for the 

line X = 4602, a phenomenon which we should not expect, and do not find, in the 

lines X = 6103 and X = 4132. In cases such as this, it is not improbable that the 

broadening of the lines may be affected by the potential fall between the poles of the 

arc, and indeed such phenomena as the “ pole effect,” or the small changes of wave¬ 

length which have been found to occur in the neighbourhood of the poles of the arc, 

may ultimately be explained in this way. In this case any contribution to the 

phenomenon of the direct action of the potential fall between the poles might be 

detected by polarizing the light. It may also be necessary to consider whether many 

* ‘Ann. d. Rhys.,’ (4), 9, p. 729, 1902. 
f Ramage, ‘Roy. Soc. Proc.,’ vol. 71, p. 164, 1903. 
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apparent cases of reversal are not in fact spurious, having no relation to true reversal, 

clue to absorption. 

Finally, the different character of lines of the same series in the spectra of the 

alkaline earth metals which lias been noted by Koyds# may be expected to fall into 

line with their electrical resolution when the necessary data are available. 

(XI.) Ultraspectroscopic Analysis by Means of the Neutral Wedge. 

It may be mentioned that the neutral wedge as an accessory to the spectroscope 

virtually increases its resolving power. The intensity distribution of the image of an 

infinitely narrow line, as seen in a spectroscope of known resolving power, is precisely 

defined, and analysis by means of the neutral wedge enables us to build up a system, 

both as regards position and intensity, which conforms with the curve experimentally 

found. It is therefore evident that with this accessory the practical resolving power 

of the spectroscope depends only on its dispersion, and is independent of the 

theoretical purity of the spectrum. In conjunction with the interferometer it may 

be expected to give results beyond the attainment of pure spectroscopic analysis. 

It may reasonably be hoped that the application of such methods may enlarge our 

knowledge of the structure of the finest spectrum lines. 

(XII.) Summary. 

(1) A method has been described, involving the use of a neutral-tinted wedge, 

by means of which the actual distribution of intensity in broadened spectrum lines 

can be accurately measured. 

(2) With this arrangement quantitative measurements of the hydrogen line Ha 

have been made, and qualitative observations of other lines of hydrogen, helium, and 

lithium. 

(3) The intensity distribution of lines, broadened by condensed discharges and 

at high pressures, does not follow the well-known probability law, which is known 

to obtain under certain specified conditions. 

(4) The broadening of Ha is symmetrical. 

(5) The most general characteristic of all the curves obtained is that their 

curvature is away from the axis perpendicular to the wave-length scale. It is shown 

that even in the case of a simple curve, such as that found for Ha, this is inconsistent 

with the view that a single component is involved. 

(6) The existence of more than one component is in accordance with the view that 

the electrical resolution of the lines is the origin of their broadening. 

(7) On the supposition of several components, symmetrically distributed about the 

* Loc. cit. 
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centre, the only general law consistent with the distribution of curvature is that of 

a sum of linear exponential terms, one for each component. 

(8) It is shown that under these circumstances discontinuities in the slope of the 

curves must occur. The discontinuities which have been found in the curve for 

Hn are in quantitative accordance with those to be expected from the available data 

with respect to the electrical resolution. 

(9) Qualitative observation of TQ, Hv and the diffuse series of helium and lithium 

confirms the view that electrical resolution is the principal cause of the phenomena. 

(10) A discussion of further applications of the method is given. 



Nicholson and Merton, Phil. Trans., A, vol. 21G, Plate 2. 
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